Effective Date: March 17, 2011
Revision -

GSFC JPSS CMO
07/16/2011
Released

Joint Polar Satellite System (JPSS) Ground Project
Code 474
474-00019-01

Joint Polar Satellite System (JPSS)
Application Programming Interface (API)
User’s Guide, Volume |

For Public Release

The information provided herein does not contain technical data as defined
in the International Traffic in Arms Regulations (ITAR) 22 CFC 120.10.
This document has been approved For Public Release.

Goddard Space Flight Center

Greenbelt, Maryland

National Aeronautics and
Space Administration

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

APl UG Vol 1 474-00019-01
Effective Date: March 17, 2011
Revision -

This page intentionally left blank.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

APl UG Vol 1 474-00019-01
Effective Date: March 17, 2011
Revision -

Joint Polar Satellite System (JPSS)
Application Programming Interface (API)
User’s Guide, Volume |

JPSS Electronic Signature Page

Prepared By:

Thomas Jennings
JPSS Ground Project System Engineer
(Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm)

Reviewed By:
JPSS Ground System
Nicholas Speciale
JPSS Ground Project Systems Manager
(Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm)

Goddard Space Flight Center
Greenbelt, Maryland

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

APl UG Vol 1 474-00019-01
Effective Date: March 17, 2011
Revision -

This page intentionally left blank.

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

APl UG Vol 1 474-00019-01
Effective Date: March 17, 2011
Revision -

Preface

This document is under JPSS Ground configuration control. Once this document is approved,
JPSS approved changes are handled in accordance with Class | and Class 11 change control
requirements as described in the JPSS Configuration Management Procedures, and changes to
this document shall be made by complete revision.

Any questions should be addressed to:

JPSS Ground Project Configuration Management Office
NASA/GSFC

Code 474

Greenbelt, MD 20771

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

APl UG Vol 1 474-00019-01
Effective Date: March 17, 2011
Revision -

This page intentionally left blank.

iv

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

API UG Vol 1

474-00019-01
Effective Date: March 17, 2011
Revision -

Change History Log

Revision

Effective Date

Description of Changes
(Reference the CCR & CCB/ERB Approve Date)

Original

03/17/2011

This version incorporates ECR1045A (Updates the
description of the Geospatial Subsetting and Data Product
ID request parameters, corrects the parameter name in the
request examples by changing “Collection Short Name” to
“Data Product ID” and correcting the corresponding request
parameter, and corrects the definition of AIX and the
version of StorNext in Appendix A.); 474-CCR-11-0016
(ECR-CGS-0026: 1. Update aggregation information in
section 3.1 — PCR022579; 2. Insert new C++ APIs for
Destination sets - PCR024792; 3. Create new Section 6.1.2
listing the C++ Environment Variables; and 4. Create new
Section 6.1.3 with a TBD for the DDS API Certificate
installation for C++ APIs - PCR024199) and Rev C of
D41044-01 to create Rev -. This was approved at the JPSS
Ground ERB March 17, 2011

\'

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

APl UG Vol 1 474-00019-01
Effective Date: March 17, 2011
Revision -

This page intentionally left blank.

vi

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

Northrop Grumman Space & Mission Systems Corp. NORTHROP GRUMMAN
Space Technology

One Space Park

Redondo Beach, CA 90278

Raytheon

N
NP) ESS

Northrop Grumman DOC =« DoD
Raytheon NASA

Engineering and Manufacturing Development (EMD)
Acquisition & Operations Contract

CAGE NO. 11982

@ational Polar-Orbiting Operational Environmental Satellite System\
(NPOESS) Application Programming Interface (API) User’s Guide,
Volume |

DOCUMENT DATE: 08/19/2009 DOCUMENT NO. D41044-01
k CDRL A009 REV. C /

POINT OF CONTACT: Terri Matthews, Systems Integration

ELECTRONIC APPROVAL SIGNATURES:

Clark Snodgrass, SEITO Director Fabrizio Pela, SEIT IPT Lead
Keith Reinke, Ground Segments IPT Lead Mary Ann Chory, Space Segment IPT Lead
Ben James, Operations and Support IPT Lead David Vandervoet, NPOESS Program Manager
Prepared by Prepared for
Northrop Grumman Space Technology Department of the Air Force
One Space Park NPOESS Integrated Program Office
Redondo Beach, CA 90278 C/O SMC/CIK

2420 Vela Way, Suite 1467-A8
Los Angeles AFB, CA 90245-4659

Under DISTRIBUTION STATEMENT F: Distribution statement “F”

Contract No. F04701-02-C-0502 signifies that further dissemination should only be made as
directed by the controlling DoD Office (NPOESS IPO). Ref
DODD 5230.24.

This document has been identified per the NPOESS Common Data Format Control Book — External
Volume 5 Metadata, D34862-05, Appendix B as a document to be provided to the NOAA
Comprehensive Large Array-data Stewardship System (CLASS) via the delivery of NPOESS
Document Release Packages to CLASS.

Northrop Grumman Space & Mission Systems Corp. mm"’_{fm
Space Technology o

One Space Park Raytheon
Redondo Beach, CA 90278

For Document

Revision/Change Record No. D41044-01

Document Pages

Revision Date Revision/Change Description Affected

03/09/2007 Initial release. Divided into two volumes from the basic document All
with reorganization of content. Incorporated ECR 560

A 06/20/2008 | Full revision of the document to incorporate IDPS B1.5 API All
documentation. This revision of the document changes the content
and structure of the API for the C++, Java, and JMS APIs

The Revision, ECR 778, also incorporates the following DCOs:

DCO A1 D41044-01 NPOESS API User's Guide Vol.l ECR 654 — C
API Effectivity

ECR 778A removes fillInXML, fillinData, readFile per comments
submitted against the ECR. Also, removed spaces from
DDDS_PORT and DDDS_HOST definitions.

B 01/23/09 ECR 891A is a revision of the document to incorporate comments All
from CCR and CDA reviews.

e Added the NPOESS Software Standard and Practices Manual
(SSPM) to the list of reference documents.

e Clarified the use of IET in several places and specified the
precision of times in several places

e Corrected definitions of Latitude in several places as well as
the Latitude Values in several of the examples

e Miscelaneous grammar changes for clarity

C 8/19/09 ECR 985A updated the version number for StorNext All

ECR 985 is a revision of the document to bring document into
alignment with IDPS Build 1.5.X.1. It also updates the versions of
compilers and COTS used for the API.

e Also incorporates ECR 954, Deletion of C API

D41044-01C

Page i

Table of Contents
1.0 INTRODUCTION. ... 1
S T o o o 1= PSR 1
1.2 VOIUME OVEIVIEW ...ttt ae e eeeeeeeeeenenennees 1
1.3 DoCUMENT OVEIVIEW........ciiiiieeeeeee et e e e e e 2
1.3.1 Description of Code Sub-sections.............cccooeiiiiiiiiiiiiiiii e 2
1.4 Configuration Management................uuiiiiiiiiiiiiiiiiiiiiiiiiee et eeeeeeees 2
2.0 APPLICABLE DOCUMENTS ... e 4
2.1 Compliance and Reference Documentscccooeeiiiiiiiiiiiiiii e 4
P (=Tt To (=T o o PR 7
3.0 APIOVEIVIEW ..ottt et e e e e e e e e et e e e e e e e e e anaanns 8
K Tt N o |] {1 9
3.2 GrANUIES ... aaan 10
4.0 USEr fUNCLIONS ... 11
4.1 Initial Connection: How to Connect in order to Loginccoovvviiiiiiiiiininnnnnn. 11
4.2 Loggingintothe Systemoeueiiiiiii e 11
4.3 Requesting Data Products from the Data Delivery Subsystem (DDS)............ 12
4.3.1 Common User-Supplied Request Parameters.............cccooevvvviiieeeeeeeeenn, 13
4.3.2 ReqUESt EXamMPIES.....cco o 25
4.4 Request TeMPIAteS......cooiiiiiii e 30
4.5 Destination List Management............cooooiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 30
4.6 Catalog Management..........coooiiiiiiiiii i 30
4.6.1 Data Catalog QUETIEScooeiiieeieeeeeeeeeeee 30
4.6.2 Data Catalog REQUESTES..........uuiieiiiieeeeeee e 31
4.7 SUPErViSOr FUNCLIONScocoiiiiiiiiee e e e e 33
ST O I 1 I 5 34
6.0 C++ API DocUmMENtatioN.........cooi i 35
6.1 Coding CONVENTIONSottt e e e e e 35
6.1.1 C++ Coding CONVENLIONS.......uuiiiiiiiiiiiiiiiiiiiiii e 37
6.1.2 Environment Variables..............oooo 37
6.1.3 Procedures for Client-side DDS API SSL Certificate Installation 37
6.2 C++ API Module Documentation List ... 37
6.2.1 DDSAPI_Message Class Reference ... 37
6.2.2 DDSXML_CatalogRequest Class Reference..........cccccevviiiiiiiiiiiiiicieeeenn. 60
6.2.3 DDSXML_DataProduct Class Reference............cooouveiiiiiiiiiiiiiiicieeeee 61
6.2.4 DDSXML_DataProductList Class Reference...........ccccceeeeevvvviiieeiiiieeeen, 64
6.2.5 DDSXML_DataShipment Class Reference...........ccccceeiiiiiiiiiiicii 70
6.2.6 DDSXML_Destination Class Reference.............cccoeeevviiiiieiiiiiiiiiiiiieeeee, 76
6.2.7 DDSXML_GEORequest Class Referencecocouviiiiiiiiiiiiiiiiiciieeeee 89
6.2.8 DDSXML_PeriodicRequest Class Referenceccccoeeeeveiviieeeiinnnnnn... 104
6.2.9 DDSXML_ProductRequest Class Reference..........ccccccceeiiiiiiiiiiiiiinnn. 109
6.2.10 DDSXML_QueryRequest Class Referenceccccoeeeeiiiiiiiiiiiiceeeennn. 110
6.2.11 DDSXML_Request Class Referencecoooveiiiiiiiiiiiiiiiceccieeeeee 111
6.2.12 DDSXML_StandardRequest Class Reference..........cccccoeevvvvieeiiiinneenn. 118
6.2.13 DDSXML_SystemMessage Class Reference............ccccccuuiiiiiiiiiiiinnnnes 120

6.2.14 DDSXML_TemporalRequest Class Reference........c.ccccceevvvveeeiiiinnennn. 122

6.2.15
6.2.16
6.2.17
6.2.18
6.2.19
6.2.20
Appendix A
Appendix B

D41044-01C

Page ii

DDSXML_DataProductIDList Class Referencecccccooevvvvvieeeennnnnn... 126
DDSXML_User Class Reference.............uueeeeieeeiiieiiiiiieeeeeeeeeeeee, 132
DDSXML_UserList Class Referenceccoooeeeevveieiiiciiiieeeeeeeeeen, 133
DDSXML_Email Class Referenceccceeeeieiiiiiiiiiicieeeeeeeeeeeee, 137
DDSXML_Longitude Class Reference............cccooooeiiiii, 139
DDSXML_Latitude Class Reference..........cccoeeeeeeiiiiiiiiiiiieeeeeeeeeee, 142
System RequiremMents 145
Document Specific Acronyms List...........ccooiiiiiiiiiiiiiiiiiicee e 147

D41044-01C

List of Figures

Figure 6.2.1-1, DDSAPI_Message Class UML Diagramcccoeveveeieieeeeeennnen. 38
Figure 6.2.2-1, DDSXML_CatalogRequest UML Diagramcccvvvvveeeennn.n. 60
Figure 6.2.3-1, DDSXML_DataProduct UML Diagramcccovvviiiiiiiiiiiinennnn. 62
Figure 6.2.4-1, DDSXML_DataProductList UML Diagram..............ccccovvvvieeeen..n. 64
Figure 6.2.5-1, DDSXML_DataShipment UML Diagramcccccvveeeeeeeeeeeennnnn. 71
Figure 6.2.6-1, DDSXML_Destination UML Diagramccccooooeviiiiiiiiceneeennn. 76
Figure 6.2.7-1, DDSXML_GEORequest UML Diagram.............cccceveeeeeeeeeeeeeeennnn. 89
Figure 6.2.8-1, DDSXML_PeriodicRequest UML Diagram...............cccoevvvrrnnnnn. 104
Figure 6.2.9-1, DDSXML_ProductRequest UML Diagramcceevvevvvnnnnnn. 109
Figure 6.2.10-1, DDSXML_QueryRequest UML Diagram.........ccccccevvvvevevennnne. 110
Figure 6.2.11-1, DDSXML_Request UML Diagram..............cccueeeeieeieeiieeeeeeeennen. 111
Figure 6.2.12-1, DDSXML_StandardRequest UML Diagramccccovvunee. 119
Figure 6.2.13-1, DDSXML_SystemMessage UML Diagram..........cccccccevvvvveenen. 120
Figure 6.2.14-1, DDSXML_TemporalRequest UML Diagram..............ccoevvunnn. 123
Figure 6.2.15 -1, DDSXML_DataProductIDList UML Diagram...........ccccccvvuenn.. 126
Figure 6.2.16 -1, DDSXML_User UML Diagramcccooovviiiiiieeeeeneeieeiiiinnn. 132
Figure 6.2.17 -1, DDSXML_UserList UML Diagram.............cccuuveeiiiiiiiiiieeeeeennn. 133
Figure 6.2.18 -1, DDSXML_Email UML Diagramcooovvvieiieeieeneeeeiiiiinn. 137
Figure 6.2.19 -1, DDSXML_Longitude UML Diagramccccevveeeeeeiieeeeeennnn. 139

Figure 6.2.20 -1, DDSXML_ Latitude UML Diagramcccceeeeieeiiiniiiiiinninnnn. 142

Page iii

D41044-01C

List of Tables
Table 2.1-1, Compliance and Reference Documents..............ccccoovviiiieriiiiiiceeeenn. 5
Table 4.2-1, Login, Submit Request, and Logout Processcccceeiveieieiinnnnn, 12
Table 4.3.1-1, Request Parametersccoiiiiiiiiiiiiicii e 14
Table 4.3.2.1-1, Standard Request Parameters for SDR/EDR/IP/TDRs.............. 25
Table 4.3.2.2-1 Standard Request Parameters for RDRscccccooeiiiiiiieninnnnn. 26
Table 4.3.2.3-1 Standard Request Parameters for Spacecraft Diary RDRs........ 27
Table 4.3.2.4-1, Temporal Request Parameterscccooooveviiiiiiiiciiiie e, 27
Table 4.3.2.5-1, Ancillary Data Standard Request Parameters........................... 28
Table 4.3.2.6-2, Auxiliary Data Standard Request Parameters........................... 29
Table 4.6.2-1, Data Catalog Request Parameterscccooovviiiiiiiiiiiciiiieeinn, 32
Table 4.6.2-2, Data Catalog Request Parameters Example...........cccccoeveeieninenns 32
Table 6.1-1, C++ Coding CoONVENLIONSciiiiiiiiiiiiiice e 35

Table B-1, Document-Specific Acronym List...........cccc, 147

Page iv

D41044-01C
Page 1

1.0 INTRODUCTION

The National Polar-orbiting Operational Environmental Satellite System (NPOESS)
Application Programming Interface (API) User’s Guide describes how users of NPOESS
environmental data can request and receive available data from the NPOESS Interface
Data Processing Segment (IDPS) through the IDPS Data Delivery Subsystem (DDS).
Users familiar with the GUI interface will notice differences between the GUI and this
document. This document does not describe the GUI interface. Instead it is a
description of a software to software interface. The GUI interface was built on top of the
software in order to make some things (such as time designations) easier for a human
to work with. This extra processing is not required by the code, and so there are deltas

between this document and the GUI options.

Included within this guide are code signatures which provide guidance for interacting
with IDPS/DDS in order to submit requests, customize requests for a variety of unique

request types, and specify valid data delivery destinations.
1.1 Scope

This document is intended for any programmer who uses the NPOESS API. This
document contains information about the NPOESS API, its coding conventions, and
code signatures. It includes the general descriptions of functions, descriptions of
request parameters and the effect they have on requests, and descriptions of the

various types of requests.
1.2 Volume Overview

Due to the size of the NPOESS API User’'s Guide, this document is divided into two
volumes. See the Document Overviews of each of the volumes for a detailed

description of their contents. The volumes are organized in the following manner:

NPOESS API User’s Guide Volume I: Contains general information for all users of the
NPOESS API, as well as the code signatures for the C++ APlIs. Sections 1 through 4 of

this volume contain general information which is used by both volumes.

NPOESS API User’s Guide Volume II: Contains material that is unique to the Java

and Java Messaging Services (JMS) APIs including their code signatures.

D41044-01C
Page 2

1.3 Document Overview
The sections in this volume of the document are organized in the following manner:

Section 1 Introduction — This section provides an overview of the NPOESS API system
requirements and summarizes the document layout, scope, and configuration

management of this document.

Section 2 Applicable Documents — This section identifies applicable compliance and

reference documents. It also establishes an order of precedence in the event of conflict

between this document and other documents.

Section 3 API Overview — This section provides an overview of the capabilities of the

API, as well as a short discussion of the HDF5 file format and a description of data

granules.

Section 4 User Functions — This section describes the common and unique parameters

required to generate requests for NPOESS Data Products, Ancillary Data, Auxiliary
Data, and the Data Catalog. High-level examples are provided for all of the IDPS DDS

request types.
Section 5 Deleted

Section 6 C++ API — This section provides the information for the C++ version of the
API.

Appendix A System Requirements —This section contains information pertaining to the
software needs of the NPOESS API.

Appendix B Document Specific Acronyms List — Provides a list of acronyms unique to

this document. All other acronyms are identified and listed in the NPOESS Acronyms,
D35838.

1.3.1 Description of Code Sub-sections

The sections describing the functions available, including the code, are organized in the
same way. This layout is applicable to the code section for the C++, Java, and JMS
APls in both Volumes | and Il. All of these sections are divided into the following

subsections:

D41044-01C
Page 3

e Coding Conventions — contains the programming convention for the

relevant language.

e Module Documentation List — lists the various Modules available via the
API

o Class Name
= Class Attributes — if applicable
= Class Enumerations — if applicable
= Class Constructors
= Class Functions
1.4 Configuration Management

The Government NPOESS IPO Level 1 Configuration Control Board (CCB) is the
Configuration Management (CM) authority for external documentation. The Government
External ICD stakeholders (e.g., NPOESS IPO, NASA, AFWA, FNMOC, NAVO,
NOAA/NESDIS, and NOAA/CLASS) participate in this CCB since any change to a
Class 1 document is a Class 1 change (as defined in NPOESS System Spec, SY15-
0007). Any subsequent change to external documents after the initial baseline requires
a Class 1 Engineering Change Request (ECR) and approval by the Government
NPOESS IPO Level 1 CCB.

After approval and release, the Shared Configuration Management Office (CMO)
performs the Data Management function and has responsibility for this document.
Revisions are issued in the form of a complete document release or change pages, as

applicable.

D41044-01C
Page 4

2.0 APPLICABLE DOCUMENTS
2.1 Compliance and Reference Documents

Compliance documents show conformity in fulfilling official program requirements.
Compliance documents, whether Government or non-Government, officially form a part

of this document to the extent specified herein.

Reference documents provide additional information that may or may not be used to
define an interface or service. In those cases where they are not needed to define an
interface or service, they provide supplemental or corollary information, e.g., the
NPOESS Acronyms, D35838. In this example, the reference provides the definition of

the acronyms, but is not needed to develop an interface or service.

Table 2.1-1, Compliance and Reference Documents identifies those documents
referenced throughout this document, specifying whether they are compliance or

reference.

Table 2.1-1, Compliance and Reference Documents

D41044-01C
Page 5

el Document Title Brief Description Compliance/Reference
Number
D31405 NPOESS Security Implementation Plan (SIP) Defines the security policies for NPP and Compliance
NPOESS
SY15-0007 NPOESS System Specification Deflr)es the NPOESS and NPP system level Compliance
requirements
. . . Defines the external interfaces between Reference
Date1 O e e mester) | NFOESS and no NESDIS Canrlan
between NPOESS and CLASS
D34466 NPOESS to Department of Defense Interface Control Defines the external interfaces between Reference
Document NPOESS and the DoD Centrals
D34645 NPOESS to NPOESS Preparatory Project Science Data Defines the external interfaces between Reference
Segment ICD NPOESS and SDS
Defines the common interfaces and services Reference
D34659 NPOESS Common Interfaces and Services Interface accessible to various users for MSD or to
Control Document access NPP/NPOESS data (e.g. Work Request
System)
Describes the data content and format of the Reference
D34862 NPOESS Common Data Format Control Book — External data distributed via external and/or inter-
segment logical interfaces
D35836 NPOESS Glossary Prov[de_s brief definitions of NPOESS Reference
specialized terms
D35838 NPOESS Acronyms Prowc_jeg a list of NPOESS acronyms and their Reference
descriptions
MN60822-PMO- | NPOESS Software Standard and Practices Manual Provides Programming Standards and Reference
001 (SSPM) Practices for Software Engineers
Apache Software Reference

Foundation

http://www.apache.org/

Website for Apache Software Foundation

D41044-01C
Page 6

LEEIIEmS Document Title Brief Description Compliance/Reference
Number
Borland http://www.borland.com/us/products/middleware/index.html | Website for Borland Software and Middleware Reference
IBM http://www-306.ibm.com/software/sw-atoz/index.html Website for IBM products Reference
Internet Reference
Engineering Task | http://www.ietf.org/ Website for the Internet Engineer Task Force
Force (IETF)
Microsoft http://www.microsoft.com/windows/default.mspx Website for Microsoft windows Reference
World Wide Web Reference

Consortium (W3C)

http://www.w3.org

Website for the World Wide Web Consortium

D41044-01C
Page 7

2.2 Precedence

In the event of a conflict between a compliance document listed in Table 2.1-1,
Compliance and Reference Documents and the contents of this document, the
NGST SEITO organization, in conjunction with the IPO, shall resolve the conflict.
For all Class 2 documents, the SEITO organization shall resolve the conflict. In
the event of a conflict between this document and a reference document listed in
Table 2.1-1, Compliance and Reference Documents, this document takes

precedence.

D41044-01C
Page 8

3.0 APl OVERVIEW
The purpose of this document is to provide guidance to users who are writing
code or scripts that will request data from the NPOESS IDPS/DDS. This

document provides detailed descriptions for the following operations:

e logging on to the system to gain access to the functions and logging off
the system

e data request generation and modification
e specification of the data delivery location
e data request submission

To submit a request, the user’s software must first log on with a username,
password, and user role. The software submits the request supplying a unique
Request ID along with the request parameters. Once a system generated
Request ID is received in response, the software may perform other functions,
request status or request retrieval of templates, destinations, or other data, or it
may log itself out of the system. Data is not sent through this interface, so it does
not matter whether the software remains logged in to the system or not. If the

request includes an email address, status will be sent to that address.

Data request generation requires the user’s software to build a request which
specifies the desired type of data and the parameters that describe the exact
information required. Requests may be built from scratch, or built from templates.
IDPS/DDS data includes Raw Data Records (RDRs), Temperature Data Records
(TDRs), Sensor Data Records (SDRs), Environmental Data Records (EDRs),
Application Related Products (ARPs), certain Intermediate Products (IPs),
Auxiliary Data, and Ancillary Data. A user may also request a granule from the
data catalog. Only data that is delivered through the IDPS/DDS can be
requested. Some data, including items not listed here, such as reports, may be
available through other mechanisms. Each request, whether submitted via a GUI
or the API, is associated with a user. The user’s role may preclude them from

receiving certain items, such as some IPs or unofficial Auxiliary Data. For more

D41044-01C
Page 9

information about roles, see the appropriate Interface Control Document
(NPOESS to Department of Defense ICD, D34466; NPOESS to National
Oceanic and Atmospheric Administration ICD, D31413; NPOESS to NPOESS
Preparatory Project Science Data Segment ICD, D34645; or the NPOESS
Common Interfaces and Services ICD, D34659).

Some request parameters include a timed process delay, request effectivity,
aggregation, and delivery of repaired granules. Request effectivity specifies the
time that the request is active, usually specified as a start time and duration.
Times are in IDPS Epoch Time (IET). For information regarding IET see the
CDFCB-X Volume | - Overview, D34862-01. Where appropriate, parameters can

also specify a particular time or geolocation for the data.

The request must also include a destination location for the requested data.
Delivery locations may be added to, modified, or deleted from the request.
Delivery locations must be fully qualified destinations, with the qualifications
based upon the protocol used. For example, an ftp destination would be specified
as ftp://user:password@host:port/path, while a SAN File System destination
would be file://host/path.

Status of requests can be obtained through email, by logging into the API and
requesting status, or both. If an email address is specified in the request, status
will be sent by email and the login into the APl does not need to be maintained. If
status through the APl is desired, then the login must be maintained with a

persistent process.

Some users are given supervisory duties for a set of users. Software connected
to the system using these supervisor IDs have functions available that can be
used to manage requests (suspend, resume, delete) for users or to transfer

ownership of requests from one user to another.
3.1 HDF Files

The requested data and its associated metadata are wrapped and delivered in

HDF5 formatted files. If aggregation is not specified for NPOESS Data Products,

D41044-01C
Page 10

each granule that meets the request criteria is shipped in a separate HDF5 file. If
aggregation is specified, each aggregate of granules that meets the request
criteria and contains the minimum number of granules needed to meet or exceed
the requested aggregation length will be sent in a single file. The requested
aggregation length is limited to a maximum of 104 minutes. An HDF5 file will not
contain data that spans more than the requested aggregation length plus the
length of one granule. If the request is filled by data that covers a longer temporal
range than this, the data will be broken into multiple HDF5 files, with each file
containing data that spans no more than this maximum time. For more
information on HDF5 files, refer to the NPOESS Common Data Format Control
Book - External (CDFCB-X) Volume |, D34862-01.

3.2 Granules

A granule is a segment of data with the size optimally determined to achieve
maximum efficiency for an algorithm class. It is a collection of data associated
with an integer number of sensor scans, and its definition may vary for each

sensor and data product.

A granule is the smallest data product unit delivered by NPOESS. Granules are
defined by time; therefore granule data volumes vary according to instrument. If a
request is made such that either the start point or the end point of the request is
contained within a granule, the whole granule is delivered. This is true whether
the request is made temporally or spatially (using geographical coordinates), and
is true of any criteria specified in the request (e.g., ending points, boundary

lines). See the CDFCB-X, Volume I, for more information.

D41044-01C
Page 11

4.0 USER FUNCTIONS

This section briefly describes the classes of user functions available to the
(software) user. In general, the user must log into the system to create or submit
a request, update their destination lists, view the catalog, or manage or edit their
requests. The user may also inspect the system messages and product status
while logged into the system. If the user provides an email address for the
request, the user may log out and receive product status (but not system

messages) via email.
4.1 Initial Connection: How to Connect in order to Login

If the proper parameters are passed to the message object created by an
implementation of the API, a DDS Request Server is running, and the firewalls
are configured correctly then the API will connect to the DDS Server when the
message object is created. The API connection will be kept open by heartbeats
until the message object is destroyed. Making a connection to the DDS Server is
independent of a login. If a valid connection is made then a login to the Server
can be requested. After the application calls login on the message object with a

valid login, then the application will be logged into the Server.

A login will not timeout if a call to an APl command, which modifies an API
object, is made (add, modify, delete request...etc). If an application does not
update an object, then the Server may timeout the application based on the

Server’s inactivity timeout value.
4.2 Logging into the System

In order to access any of the functions provided by the API, a login into the
system must occur. This requires a username, a password, and a user role be
provided to the system. The user role determines what data may be accessed.
Once the system authenticates and authorizes the login information, requests
can be created, submitted, or managed. Requests are processed and the data
products are shipped independent of whether the user or the user’s software

remains logged into the system or not.

D41044-01C
Page 12

Table 4.2-1, Login, Submit Request, and Logout Process, illustrates the steps for

logging in, submitting the request, and logging out of the system.

Table 4.2-1, Login, Submit Request, and Logout Process

LOGIN
User Name
Password
User role
l
| Submit Request |
l
| Request Management |
l

| Logout |

4.3 Requesting Data Products from the Data Delivery Subsystem (DDS)

This section describes request functions for the NPOESS IDPS/DDS software.
Data request generation includes specifying the request type (see Table 4.3.1-1,
Request Parameters) and supplying the request criteria, or parameters, required
to generate the desired information. Requests consist of several parts, some are
common to all requests, and others are unique to a particular request type. The
sequence of items in the code is not important, but the user must submit all
required parameter information for both common and uniquely-defined
parameters. This information can be found in Table 4.3.1-1, Request
Parameters. A user can submit requests for any available data allowed by their
user role. This section also provides examples for each of the request types,
including requests for NPOESS Data Products, Auxiliary Data, and Ancillary
Data.

A user can create a request from scratch or use an existing request template in
order to create the request. If a request is created from scratch, the user must
specify all necessary details about the request, including the request type,
destination, and the effectivity (specification of the range of time that the request

spans). If the user creates the request from a template, they should modify the

D41044-01C
Page 13

Request ID in order to aid traceability and may modify any of the other request
parameters. In addition to creating, submitting, and modifying requests, a user
may also view, suspend, resume, and delete requests. Request status is kept in
the request itself. The user can use the getState function to obtain the request

status.

4.3.1 Common User-Supplied Request Parameters

Requests consist of several parts, some common to all requests, and others
unique to a particular request type. Common parameters apply to any request,

regardless of the request type.

Common required data request parameters include the request name, the
product type or category, the data delivery or destination location, and effectivity
of the request. Optional common code parameters include process delay, and
delivery of repaired data.

Table 4.3.1-1, Request Parameters, defines the parameters that are used in
creating requests for data. The request can also be limited in scope by specifying

the time or geography with either a temporal or spatial (geographic) subsetting.

The second column of the table specifies the request type which the parameter
applies to, and the last column tells you whether or not that parameter is required
or optional for the request types the parameter applies to. If the parameter does
not apply to a request type, that parameter should not be included in that

request.

Table 4.3.1-1, Request Parameters

Common Applicable Applicable Description Required
User-Supplied | Implementation | Request / Optional
Parameters Type Type
Implementation N/A All Various way Request Types will be Required

Request Type

implemented. Availability of Request Types is
dependent upon role configuration.

Standard Request products.
Request

Temporal Request products
Request temporally.

Periodic Requesting Gridded IPs.
Request

Catalog Request products from the
Request Data Product Catalog.

Catalog Query

Query products from the
Data Product Catalog.

D41044-01C
Page 14

Common Applicable Applicable Description Required
User-Supplied | Implementation | Request / Optional
Parameters Type Type
Request Type All N/A The user must specify a request type. Required

Availability of Request Types is dependent
upon role configuration. For Standard and
Temporal Requests, the request types are:

SDR_ED | These include SDRs, EDRs,

R_IP TDRs, ARPs, and IPs. Which one
of these is desired is controlled by
the category parameter.

DIARY These include Diary, Dump, and
Dwell RDR that give various
information about spacecraft
health, attitude, and ephemeris.

RDR These include science, diagnostic
RDRs.

GRIDDE | Gridded Intermediate Products.

D_IP

CATALO | Catalog Requests for products on

G the system catalog.

AUX Aucxiliary Data. These data

products are produced by
NPOESS, and are required by
NPOESS algorithms (with the
exception of sensor data) to
achieve specific system
specification performance
attributes.

D41044-01C
Page 15

Common
User-Supplied
Parameters

Implementation

Applicable

Type

Applicable
Request

Type

Description

Required
/ Optional

ANC Ancillary Data. These data
products are not produced by
NPOESS, but are required by
NPOESS algorithms to meet the
attributes specified by the system
specification for applicable
NPOESS Data Products.

Request Name

All

All

The user supplies a request name. This name
should be unique to distinguish it from other
requests. If the user submits multiple requests
with the same Request Name, they will be
given separate Request IDs and be treated as
separate requests.

Required

Request ID

All

All

The system generates a unique Request
when an ID is requested or when a request
without a Request ID is submitted. For all
other actions on the request, the user
supplies this parameter.

Required,
except for
request
creation

D41044-01C
Page 16

Common Applicable Applicable Description Required
User-Supplied | Implementation | Request / Optional
Parameters Type Type
Destination Standard, Temporal, | All The user specifies the destination of the Required
Periodic, and requested data. Delivery of the data may

Catalog Request

require a username and password for some
destinations.

Prior to submitting the data request, the user
must supply a destination. Prior to shipping
the data, the software checks to see that the
destination is on the destination list
maintained by the software. The destination
may be modified, added to, or deleted. There
may be more than one destination associated
with a request, and there must always be at
least one destination associated with a
request.

D41044-01C
Page 17

Common Applicable Applicable Description Required
User-Supplied | Implementation | Request / Optional
Parameters Type Type
Effectivity Standard, Temporal, | All Effectivity specifies the window of interest that | Required
Periodic, and the request is effective for. For Standard and

Catalog Request

Periodic Requests, this refers to the
observation time (NPP/NPOESS Data
Products) or effectivity time, as applicable, of
the data to be delivered. Periodic Requests
will have a start time but no end time. Periodic
Requests are assumed to run for the lifetime
of the program.

The user must specify an effectivity start time,
but can choose not to specify an end time.
Time is referenced to IET. For information on
IET see the CDFCB-X, Volume | — Overview,
D34862-01.

The minimum start time is 949388400000000
(1988-02-01). The maximum start time (or
end time) is 5680281632999999 (2137-12-12
23:59:59).

It is possible for the user to specify effectivity
in such a way that no data will be delivered.
for example, if both start and stop times are
more than 24 hours in the past the user can
submit:

e A standing request. Standing requests
have no end time specified. Any data that
meets the criteria after the start time will
be sent.

o A one time request. For these requests, a
start time and end time are required. End
times can be set to a point in the future up
to 1,167,696,000 seconds.

D41044-01C
Page 18

Common Applicable Applicable Description Required
User-Supplied | Implementation | Request / Optional
Parameters Type Type
Processing Delay | Standard and SDR/EDR/IP, | If desired, the user may specify a processing | Optional
Temporal RDR, DIARY | delay in microseconds. A processing delay of
3,600,000,000 microseconds causes the
system to wait 1 hour after data observation
time, before the data is delivered.
Only the latest version of a granule is
delivered. Maximum Processing Delay is
43,200,000,000 microseconds.
Package Data Standard and SDR/EDR/IP | If desired, the user can request delivered data | Optional
According to Temporal to be packaged with its corresponding GEO
Packaging Rules products or it can be delivered separately.
For example if a user is requesting VIIRS-I1-
SDR, if packaging is selected the user would
receive the VIIRS-IMG-GEO secondary
product in one HDF file: SVIO1-
GIMGO_npp...
Deliver Repaired | Standard and SDR/EDR/IP, | If desired, the user can request repaired data | Optional
Data Temporal RDR, DIARY | be delivered if it becomes available after the

request is initially filled, but before the request
expires. The repair delivery will be in
accordance with the packaging option of the
request, but unaggregated (even if the initial
delivery was aggregated). The repair delivery
will include the repaired granule and its
associated primary/secondary granules.

D41044-01C
Page 19

Common Applicable Applicable Description Required
User-Supplied | Implementation | Request / Optional
Parameters Type Type
Temporal Temporal SDR/EDR/IP, | The temporal subsetting is specified by a start | Optional
RDR, ANC, day, end day, start time, and duration.
AUX, DIARY | Start/End day is referenced using IET in UTC.

Start time and duration are provided in
microseconds. Both values must be less than
86,400,000,000 microseconds (one day).
Temporal subsetting provides the time period
during each day that data will be provided. If a
request has start/end dates that span ten
days and a start time of 0700 for a duration of
6 hours, then data collected between 0700
and 1300 UTC for each of the ten days will be
sent. Data is only delivered if it is within the
temporal subset time.

The delivered data might be slightly larger
than the requested data because the delivery
includes the entire granule that contains the
specified time.

D41044-01C
Page 20

Common Applicable Applicable Description Required
User-Supplied | Implementation | Request / Optional
Parameters Type Type
Geospatial Standard, Temporal, | SDR/EDR/IP, | The user may request NPP/NPOESS Data Optional
Subsetting and Catalog Query RDR, Products by specifying the upper left (north

and west of the center of the region) and
lower right (south and east of the center of the
region) geographic coordinates. This
bounding rectangle is a footprint on the
ground only and is not related to the direction
of the orbit or to the data collection
parameters. The bounding rectangle can
cover an area that contains data collected in
more than one orbit.

The coordinates may be specified using
degrees, minutes, and seconds, or by using
decimal degrees. Latitude ranges from
positive (north of the Equator) 90 degrees to
negative (south of the Equator) 90 degrees.
Longitude ranges from positive (east of the
Prime Meridian) 180 degrees to negative
(west of the Prime Meridian) 180 degrees.
The delivered data might be slightly larger
than the requested data because the delivery
includes the entire granule that contains the
specified coordinates.

There exists internal limits on how small or
large the geospatial region can be. The
maximum distance between the two pairs of
coordinates is 15,000 km. The distance is not
checked at request submission time. A
request with geospatial subsetting that
exceeds these limits will be failed by DDS and
an appropriate system message will be
generated to describe the nature of the error.

D41044-01C
Page 21

Common Applicable Applicable Description Required
User-Supplied | Implementation | Request / Optional
Parameters Type Type
Aggregation Standard and SDR/EDR/IP, | A user may receive data in individual granules | Optional
Temporal RDR, DIARY | or they may have granules aggregated into

one file. An aggregation is a collection of
granules of a particular NPP/NPOESS Data
Product over time. If the user specifies
aggregated granules, the user must provide
an aggregation period greater than 1 second
(1000000) and less than maximum
aggregation size, nominally 104 minutes
(6240000000).

The number of granules per HDF5 file is
calculated as the ceiling of the aggregation
period divided by the granule size. The
resulting HDF5 file(s) will contain the total
number of granules based on the aggregation
size. The alignment of the HDF5
aggregations is based on the first ascending
node after launch, which may yield fewer
granules in the aggregations at either or both
request boundaries. If no aggregation period
is provided, the user will receive each granule
that meets the request criteria in a separate
file. Aggregation is specified on a per request
basis.

For a detailed description of the calculations
involved, refer to the NPOESS Common Data
Format Control Book - External (CDFCB-X)
Volume |, D34862-01.

D41044-01C
Page 22

Common

User-Supplied
Parameters

Applicable
Implementation

Type

Applicable
Request

Type

Description

Required
/ Optional

Data Product ID

Standard, Temporal,
Periodic, Catalog
Request and
Catalog Query

SDR/EDR/IP,
RDR, DIARY,
ANC, and
AUX

The ID of the data product to be delivered. A
request may contain many data product IDs.
This definition is specific to the API requests
only and is not the same as Data Product Id
specified in other program documents. The
DataProductlD parameter is an identifier that
is synthesized by merging a Collection Short
Name and Spacecraft Name. For a complete
list of Collection Short Names, see the
CDFCB-X, Volume |, D34862-01.

The Spacecraft Name is either the Mission
Name (for ANC products) or the Platform
Short Name (for all other products). A
complete list of Platform Short Names and
Mission Names can be found in the CDFCB-
X, Volume V, D34862-05.

Each data product also has a sensor
associated with it, but it is not formally part of
the Data Product ID.

Required

Orbit ID

Standard and
Temporal

SDR/EDRI/IP,
RDR, DIARY

The range of revolution (orbit) numbers of the
data to be delivered. The range is specified
by a start orbit and an end orbit, inclusively.
Only the data that matches both the orbit
numbers and the effectivity parameters will be
delivered. Please note that for the Orbit ID
parameter to be used effectively it requires
external knowledge of the times at which a
given orbit will/lhas occurred.

Optional

D41044-01C
Page 23

Common Applicable Applicable Description Required
User-Supplied | Implementation | Request / Optional
Parameters Type Type
Periodicity Periodic GRIDDED _IP | The user can specify the period at which the | Optional
request will run and deliver new/updated files.
This value is specified as a number of days,
hours, minutes, and seconds. If this
parameter is not set, the Periodic request will
run only once, delivering all available files,
and then it will expire.
E-mail Address | standard, Temporal, | RDR, DIARY, | If selected, DDS will send DDANS to the Optional
DQN, Periodic, and | EDR/SDR/IP, | specified e-mail address each time a delivery
Catalog Request GRIDDED_IP | occurs.
, ANC, AUX Note: The use of the e-mail address

parameter is configured on a per IDP basis. It
may or may not be a valid request parameter
depending on the site.

D41044-01C

4.3.2 Request Examples

D41044-01C
Page 25

The following sections provide examples for specifying common and unique

user-defined parameters for a variety of request types, including Standard and
Temporal Requests for NPP/NPOESS Data Products, Ancillary Data, and

Auxiliary Data.

4321

Specifying a Standard Request for SDR/EDR/IP/TDRs

A Standard Request is a request for a data record, such as an ARP or an EDR.

The tables in this section represent examples of requests for NPP/NPOESS Data

Product types. Table 4.3.2.1-1, Standard Request Parameters for

SDR/EDR/IP/TDRs, identifies parameters required to submit a request for an

EDR from the VIIRS sensor on the NPP satellite. The effectivity is for one week;
beginning 25 Jan 200316 May 2008 07:00:0023:05:00 — 25 Jan 2003 08:00:00.

Aggregation is 10 minutes. Processing Delay is set to 5 minutes. The request will

deliver repaired data and package data according to packaging rules for data that

is located in those GEO coordinates that are supplied with the request.

Table 4.3.2.1-1, Standard Request Parameters for SDR/EDR/IP/TDRs

Standard Request

SDR/EDR/IP/TDR

Request Name MyRequest
Request ID (Server 100000000001
Generated)
Data Product ID VIIRS-CM-IP_NPP
Destination 100000000045
Effectivity Start/End 1422169232000000
Time

1422172832000000
Aggregation 600000000
Processing Delay 300000000

Geospatial Subsetting
On

Upper Left Latitude
46.10

Upper Left Longitude -
145.30

Lower Right Latitude -
45.10

Lower Right
Longitude -145.10
Deliver Repaired Data | y
Package data y

according to
packaging rules

4.3.2.2 Specifying a Standard Request for RDRs
A Standard request is a request for a raw data record. The tables in this section

D41044-01C
Page 26

represent examples of requests for RDR type products (not Diary RDR). Table

4.3.2.2-1 Standard Request Parameters for RDRs, identifies parameters required

to submit a request for an RDR from the ATMS sensor on the NPP satellite. The
effectivity is for one week; beginning 25 Jan 2003 07:00:00 — 25 Jan 2003
08:00:00 UTC. Aggregation is 10 minutes. Processing Delay is set to 5 minutes.

The request will deliver repaired data for data that is located in those GEO

coordinates that are supplied with the request.

Table 4.3.2.2-1 Standard Request Parameters for RDRs

Standard Request

RDR

Request Name

MyRequest

Request ID (Server
Generated)

100000000001

Data Product ID

ATMS-SCIENCE-

RDR_NPP
Destination 100000000045
Effectivity Start/End 1422169232000000
Time

1422172832000000
Aggregation 600000000
Processing Delay 300000000
Geospatial Subsetting | Upper Left Latitude
On 46.10

Upper Left Longitude -

145.30

Lower Right Latitude -
45.10

Lower Right
Longitude -145.10

Deliver Repaired Data

y

4.3.2.3 Specifying a Standard Request for Spacecraft Diary, Telemetry,
Dwell, and Dump RDRs

A Standard request is a request for a raw data record. The tables in this section

represent examples of requests for Diary/Dump/Dwell type products. Table

4.3.2.3-1 Standard Request Parameters for Spacecraft Diary RDRs, identifies

parameters required to submit a request for an RDR from the ATMS sensor on
the NO1 satellite. The effectivity is for one hour; beginning 25 Jan 2003 07:00:00
— 25 Jan 2003 08:00:00 UTC. Aggregation is 10 minutes. Processing Delay is set

to 5 minutes. The request will deliver repaired data.

D41044-01C
Page 27

Table 4.3.2.3-1 Standard Request Parameters for Spacecraft Diary RDRs

Standard Request Diary Request Name MyRequest
Request ID (Server 100000000001
Generated)

Data Product ID ATMS-DUMP-
RDR_NO1
Destination 100000000045
Effectivity Start/End 1422169232000000
Time
1422172832000000
Aggregation 600000000
Processing Delay 300000000
Deliver Repaired Data | y

4324

Specifying a Temporal Request for SDR/EDR/IP/TDRs

Table 4.3.2.4-1, Temporal Request Parameters shows the parameters used to

temporally request an IP for the VIIRS Cloud Mask product, with a start day of 20
Jan 2003 — 30 Jan 2003 with a start time of 20 Jan 2003 at 07:00:00 with a 6

minute duration. This is for data coming from the NPP platform. The geospatial

setting is set.

Table 4.3.2.4-1, Temporal Request Parameters

Temporal Request

SDR/EDR/IP/TDR

Request Name MyRequest
Request ID (Server 100000000001
Generated)
Data Product ID VIIRS-CM-IP_NPP
Destination 100000000045
Effectivity Start Day:
1421712032000000
End Day:
1422576032000000
Start Time:
1421737232000000
Duration:
21600000000
Aggregation 600000000
Processing Delay 300000000

Geospatial Subsetting
On

Upper Left Latitude
46.10

Upper Left Longitude -
145.30

D41044-01C
Page 28

Lower Right Latitude -
45.10

Lower Right
Longitude -145.10

Deliver Repaired Data | y

Package data y
according to
packaging rules

4.3.25 Specifying Standard Requests for Ancillary Data

Ancillary Data requests are requests for data not produced by NPOESS, but
required by NPOESS algorithms to meet the attributes given in the System
Specification (SY15-0007) Appendix D (e.g., terrain height database or

conventional surface and upper air observations).

The Ancillary Data request shown in Table 4.3.2.5-1, Ancillary Data Standard
Request Parameters shows the parameters used to request Ancillary Data of
type NCEP-GFS-12HR-ANC to be delivered to the user. The effectivity is for one
hour; beginning 25 Jan 2003 07:00:00 — 25 Jan 2003 08:00:00 UTC.

Table 4.3.2.5-1, Ancillary Data Standard Request Parameters

Standard Ancillary Request Name MyRequest
Request
Request ID
(Server 100000000001
Generated)
NCEP-GFS-12HR-
Data Product ID ANC_NPP
Destination 100000000045
. 1422169232000000
Effectivity
Start/End Time |4 455172832000000

4.3.2.5.1 Ancillary Data Request Behavior
For a standard ancillary data request the data product ID and effectivity
parameters will determine which files to deliver. All ancillary files that match the

data product ID and overlap the effectivity (partially or completely) will be

D41044-01C
Page 29

delivered. The ancillary data request does not allow for a "deliver repair data"
parameter, this is due to the nature of the ancillary data itself. Ancillary data is
not formally repaired, although updates for ancillary data may be generated
within IDPS that overlap (in effectivity) previously generated ancillary data. Due
to this, the ancillary data request will deliver all ancillary files that match the

parameters, some of which may overlap each other in effectivity.

4.3.2.6 Specifying Standard Requests for Auxiliary Data

Auxiliary Data requests are requests for data produced by NPOESS, other than
sensor data, which are required by NPOESS algorithms to achieve the
performance attributes given in the System Specification (SY15-0007) Appendix
D (e.g., ephemeris data, sensor calibration coefficients, sun angles). Auxiliary

Data is identified by their Collection Short Names.

The Auxiliary Data request shown in Table 4.3.2.6-1, Auxiliary Data Standard
Request Parameters shows the parameters used to request Auxiliary Data of
type TLE_AUX to be delivered to the user. The effectivity is for one hour;
beginning 25 Jan 2003 07:00:00 — 25 Jan 2003 08:00:00 UTC.

Table 4.3.2.6-1, Auxiliary Data Standard Request Parameters

Standard Auxiliary Request Name MyRequest
R t
eques Request ID
(Server 100000000001
Generated)

Data Product ID TLE-AUX_NPOESS

Destination 100000000045
1422169232000000

Effectivity
Start/End Time

1422172832000000

4.3.2.6.1 Auxiliary Data Request Behavior
For a standard auxiliary data request, the data product ID and effectivity
parameters will determine which files to deliver. All auxiliary files that match the

data product ID and overlap the effectivity (partially or completely) will be

D41044-01C
Page 30

delivered. The auxiliary data request does not allow for a "deliver repair data"
parameter, this is due to the nature of the auxiliary data itself. Auxiliary data is
not formally repaired, although updates for auxiliary data may be generated
within IDPS that overlap (in effectivity) previously generated auxiliary data. Due
to this, the auxiliary data request will deliver all auxiliary files that match the

parameters, some of which may overlap each other in effectivity.
44 Request Templates

Templates are exact copies of previously submitted requests that can be used to
re-submit or create requests without having to enter every field. New requests
can be created from templates, then modified and submitted. New templates can
be created from existing requests as well. This class of user functions also

includes viewing and deleting templates.
4.5 Destination List Management

The user must have a valid destination before they can successfully submit a
request through the API. Destination List Management functions allow the user to
view the list of destinations, add new destinations, modify existing destinations,

or delete existing destinations.
4.6 Catalog Management
This class of functions has two sub-categories:

1) Those functions that allow the user to query the catalog for a list of available
data and filter and view the resulting list. These are referred to as Data

Catalog Queries.

2) Those functions that allow the user to request a particular piece of data
from the catalog. These are referred to Data Catalog Requests. The user
must query the catalog in order to obtain the information necessary to

request data.
4.6.1 Data Catalog Queries

The catalog query functions allow the user to create queries of the catalog’s

D41044-01C
Page 31

content and to view the results of those queries. It also has functions that allow
the user filter the results, to view the existing queries, or to delete a query. The

request functions are a subset of the general request functions described above.

A catalog query is a request for a list of granules that are in the system and
available to be shipped to the user. The user can specify that the list be filtered
by request type, product type or category, collection short name, spacecraft, or
sensor. The URIDs returned as part of the query results are needed as inputs to

Data Catalog Requests.
4.6.2 Data Catalog Requests

The second class of functions allows the user to create catalog requests to
retrieve the actual data from storage and have it delivered to them. The user can
view single requests, view all of the existing requests, create new requests, or

delete the requests.

Catalog requests are made for a single, existing item of data only and no
aggregation is available. Packaging is always turned on (i.e. data products are
always delivered with the geolocation). These products are identified with unique
ID numbers. The URID must be known prior to making this request and may be
found by examining the results of a catalog query. Table 4.6.2-1, Data Catalog
Request Parameters, shows the parameters used for a Data Catalog Request,
while Table 4.6.2-2, Data Catalog Request Parameters Example, identifies
common and user-defined parameters required to submit requests for Data

Catalog products.

D41044-01C

Page 32
Table 4.6.2-1, Data Catalog Request Parameters
Common Applicable Description Required
User- Request / Optional
Supplied Type
Parameters

Request Name All The user supplies a request name. This name Required
should be unique to distinguish it from other
requests. If the user submits multiple requests
with the same Request Name, they will be given
separate Request IDs and be treated as
separate requests.

Request ID All The system generates and returns a unique Required,
Request ID to the user when an ID is requested | except for
or when a request without a Request ID is request
submitted. For all other actions on the request, creation
the user supplies this parameter.

URID Data Catalog URID also known as UR ID or Universal Required

Reference ID is a unique identifier for a data
product. This is sometimes also referred to as
the GranulelD in the code signatures. URID is
defined as N_Reference_ID in the CDFCB-X,
Volume V, D34862-05.

Table 4.6.2-2, Data Catalog Request Parameters Example

Data Catalog
Request

Catalog

Request Name MyCatalogRequest
Request ID
(Server 100000000001
Generated)
43132603-11104-
URID 9b9deab3-deb2216a
Destination 100000000045
. 1422169232000000
Effectivity
Start/End Time | 4 455172832000000

D41044-01C
Page 33

| Request Name \

| Request ID (Returned) 98765 \

| URID 43132603-11104-9b9deab3-deb2216a |

| Destination h:/fileCatalog |

4.7 Supervisor Functions

Some users are given supervisory duties for a set of sub-users. These
supervisors have functions available to them that they can use to view, suspend,
resume, or delete requests for other users. They may also transfer ownership of
requests from one user to another, as long as the user’s roles are the same for

both the original request owner and the new request owner.

D41044-01C
Page 34

5.0 DELETED

D41044-01C
Page 35

6.0 C++ APIDOCUMENTATION
The C++ APl is a set of libraries that were developed and tested on a Microsoft®
Windows® or IBM AIX® platform. The user application is defined to be the
application that is using the API. The central object of the APl is the Message
object. On IBM AIX®, all NPOESS API classes are in the libDDSAPI.a library if
the static library is used and libDDSAPI.so library if the shared library is used. On
Microsoft® Windows®, only the static library, ibDDSAPL.lib, is available. There
should only be one Message object instantiated for the user application. The
default constructor should be used to construct the Message class in most cases.
The default constructor assumes that the environment variables DDS_ PORT,
DDS_HOST, DDS_TIMEOUT, DSTATICDATA, INFUTIL_CFGDOMAIN,
HTTPS_HOST, and HTTPS_PROTOCOL are already defined.

6.1 Coding Conventions

The coding conventions used for the NPOESS APl comply with the NPOESS
Software Standard and Practices Manual, MN60822-PMO-001.

6.1.1 C++ Coding Conventions
All C++ files follow the conventions found in Table 6.1-1, C++ Coding

Conventions.

Table 6.1-1, C++ Coding Conventions
C++ Coding Conventions
Application Convention

Constants All constants meant for users of the class are static and are publicly
accessible.

Non-Static Variables Non-static variables are private and may only be accessed through
setters and getters. If a setter or getter doesn'’t exist, then that variable
cannot be accessed in that fashion.

Classes All classes have a default constructor. Some of those default
constructors may not be accessible to the user application, since those
classes should not be instantiated in that manner.

D41044-01C
Page 36

C++ Coding Conventions

Application

Convention

Error exception
reporting

All errors will be reported as a C++ exception. There are three types of
exceptions that may be thrown, including:

DDSAPI_RequestException
DDSAPI_MessageException
DDSAPI_Exception

DDSAPI_Exception is the base exception class for the other two, so
simply catching DDSAPI_Exception when calling methods that throw
any of these three exceptions works.

==() method

==() method exists in classes that could be compared; in particular, this
applies to data product and request related data.

Copying Objects

Certain objects can be copied. Those objects implement a copy
constructor and an operator. Those objects perform a deep copy to
ensure all data is copied. These are for data product and request-
related data.

Memory Management

All requests, templates, data products, and catalogs are managed
through the Message object.

Do not attempt to create your own and add it. These objects will be
created and destroyed by the API.

The Message object needs to be instantiated and deleted by the user
application.

Refer to the NPOESS Software Standard and Practices Manual (SSPM),
MN60822-PMO-001, Appendix E, for additional details on coding guidelines.

6.1.2 Environment Variables

Following is a list of the environment variables that need to be specified for use

by the C++ Client.

D41044-01C
Page 37

The DDS_PORT environment variable tells the C++ API application what port to
use when communicating with the DDS Server.

The DDS_HOST environment variable tells the C++ API application the IP
address of the machine that is hosting the DDS Server.

The DDS_TIMEOUT variable tells the C++ APl how many minutes of inactivity
before closing the session.

The DDS_ROOT variable identifies the location where IDPS log files should be
stored if necessary.

The DINFUTIL_CFGDOMAIN environment variable tells the C++ API application
the location of the "INF_GuideList.cfg" file.

The DHTTPS_PROTOCOL variable tells the C++ API application if
HTTPS_PROTOCOL is either http or https

The DHTTPS_HOST variable tells the C++ API application the IP address of the
host that is running the Apache Web Server

The DDS_HEARTBEAT_DURATION variable tells the C++ API application the
duration in seconds when the Server will time out and disconnect the API if the
heartbeat is not received.

The VBROKERDIR variable identifies the location of Visibroker COTS lib files

Notes:
The IDPS Windows Installshield creates this environment variable when it's
installed

6.1.3 Procedures for Client-side DDS API SSL Certificate Installation
TBD — C++ API Certificate Installation procedures are still in work.

6.2 C++ API Module Documentation List

The C++ API consists of a set of classes defining the attributes, enumerations,
and functions that allow the user to logon, create a request, process a request,

and perform the normal manipulations on catalog items and templates.

6.2.1 DDSAPI_Message Class Reference

This object is responsible for establishing and maintaining contact with the API
Manager. It is also responsible for handling commands that can be performed in
the system. The various APl commands are executed as calls on methods in this
class. Most pointers return a copy of memory referenced by the API. It should be
deleted by the caller. The caller keeps ownership to the pointers passed in. The
API does not delete the data passed in. A user of the API must create an
instance of this class to interact with the API. All interaction with the API should

be done through this object or objects returned by this object. After this class is

D41044-01C
Page 38

created a user of this class must login to the API to use it. Calls may then be
made on public methods in this class or in the classes returned by these
methods. If there are problems executing the methods in the API then a message
will be created and added to the System Messages. A user can then use the
getSystemMessages() call to get the current system messages. A method will
exit with a false, 0, or an empty vector if there is a problem with the API usage.
Under normal API operation an exception should not be passed back to the caller
of any APl method. Do not try to create objects outside of this class. The API will

not know about them or be able to use them.

The Class diagram representing the DDSAPI_Message Class is provided in
Figure 6.2.1-1, DDSAPI_Message Class UML Diagram.

«exception»
DDSAPI_MessageException

DDSXML_DataShipment DDSAPI_Message DDSXML_SystemMessage

DDSXML_Request DDSXML_Destination DDSXML_User DDSXML_UserList DDSXML_DataProductList
+RequestTypesNames

Figure 6.2.1-1, DDSAPI_Message Class UML Diagram

6.2.1.1 DDSAPI_Message Class Attributes

static std::string DEFAULT_HOST — The default environmental variable that
stores the host name to connect to.

static std::string DEFAULT_PORT — The default environmental variable that
stores the port number to connect to.

static int DEFAULT_TIMEOUT — The default time out for the Message.

6.2.1.2 DDSAPI_Message Class Functions
6.2.1.2.1 DDSAPI_Message::DDSAPI_Message
DDSAPI_Message::DDSAPI_Message (

std::string hostname =

DEFAULT_HOST,

D41044-01C
Page 39

std::string port = DEFAULT_PORT,

int timeout = DEFAULT_TIMEOUT,
DDSXML_Command::DDSXML_ClientTypes clientType =
DDSXML_Command::CLIENT_API,

const std::string & httpsURL ="",
bool useHTTPSFlag = false)
throw (

DDSAPI_MessageException

)

Overloaded Constructor. This constructor must be used to create the DDS API
interface to the DDS Server. The default constructor should not be used. The
proper host and port must be used that matches the DDS Server setup. Make
sure that these are configurable as they may change for different Server
connections. This should be the only case in this object where an exception will
be thrown since we can not create an instance of this object.
Parameters:

hostname The environmental variable to retrieve the host name of the

Request Server from.

port The environmental variable to retrieve the port number from.

timeout The timeout duration in seconds.

clientType The client type to create - CLIENT_API

httpsURL The https url string, Example: "https://auisdev26/secure-
server/services/SecureServerAP|"

useHTTPSFlag - True to use https
Exceptions:

DDSAPI_MessageException if initialization of infrastructure fails
6.2.1.2.2 DDSAPI_Message::~DDSAPI_Message
DDSAPI_Message::~DDSAPI_Message (

)

D41044-01C
Page 40

Destructor

6.2.1.2.3 DDSAPI_Message::login
bool DDSAPI_Message::login (

std::string username,
std::string password,

std::string role

)

This method provides a mechanism for user login into the system. The user must
provide a username, and password. The role parameter is optional if this user
only has one role. If authentication fails, false will be returned to the caller. The

API must also be configured to use the API calls.
Parameters:

username The username to be used to authenticate the user.
password The password associated with the username.
role The role that is associated with the username for this login.
Returns:
bool true - if the user has successfully logged into the system. false - if the
user login attempt has failed.
6.2.1.2.4 DDSAPI_Message::logout
bool DDSAPI_Message::logout (

)

Sends a message to the server that the APl is ready to log out the user. The
session is only disconnected on timeout or if this object is deleted. This must be
called when you are done using the API. The Server uses this to clean up

internal memory faster.
Returns:

bool true - if the logout was successful false - if the logout attempt failed

D41044-01C
Page 41

6.2.1.2.5 DDSAPI_Message::getLoginState
bool DDSAPI_Message::getLoginState (

)

This method returns the login state of the system. Make sure to look at the

configuration state also.
Returns:

bool The login state, true - logged in false - no logged in
6.2.1.2.6 DDSAPI_Message::getConfigState
bool DDSAPI_Message::getConfigState (

)

This method returns the config state of the system. If true then the API has been
fully configured. If false, then a part or all of the API has not been configured. The

API must be fully configured to use the other methods in the API.
Returns:

bool The config state, true - configured false - not configured
6.2.1.2.7 DDSAPI_Message::getRoles
std::vector<std::string> DDSAPI_Message::getRoles (

std::string username,

std::string password

)

This method returns a vector of strings that contain all of the user's valid roles as
strings. This is the only APl method that does not require the user to be logged in
before it can be called. This is to allow a display/GUI to show a user all of their

roles when logging into the DDS Server.
Parameters:

username The user's username whose roles are to be obtained from the
Request Server.

password The user's password whose roles are to be obtained from the

D41044-01C
Page 42

Request Server.
Returns:

std::vector<std::string> The vector of strings that contain the user's possible
roles.

6.2.1.2.8 DDSAPI_Message::getSystemMessages
std::vector<DDSXML_SystemMessage*>
DDSAPI_Message::getSystemMessages (

DDSXML_User *user =0

)

This method returns a vector of DDSXML_SystemMessage pointers to the user.
The pointers point to memory that is owned by the caller and it is the

responsibility of the user to free this memory.
Parameters:

user The user that is requesting this API call.
Returns:

std::vector<DDSXML_SystemMessage*> The vector of
DDSAPI_SystemMessages received by the DDSAPI_Message.

6.2.1.2.9 DDSAPI_Message::getStoredSystemMessages
std::vector<DDSXML_SystemMessage*>
DDSAPI_Message::getStoredSystemMessages (

DDSXML_User *user =0
)

This method returns a vector of DDSXML_SystemMessage pointers to the user.
The pointers point to memory that is owned by the caller and it is the

responsibility of the user to free this memory.
Parameters:

user The user that is requesting this API call.
Returns:

D41044-01C
Page 43

std::vector<DDSXML_SystemMessage*> The vector of
DDSAPI_SystemMessages received by the DDSAPI_Message.

6.2.1.2.10 DDSAPI_Message::getDataShipments
std::vector<DDSXML_DataShipment*> DDSAPI_Message::getDataShipments (

std::string requestID,
DDSXML_User * user =0

)

This method returns a vector of DDSXML_DataShipment pointers to the user.
The pointers point to memory that is owned by the caller and it is the

responsibility of the user to free this memory.
Parameters:

requestlD The ID of the DDSXML_Request to get the shipment records for.
user The user that is requesting this API call.

Returns:

std::vector<DDSXML_DataShipment*> The vector of
DDSXML_DataShipment received by the API.

6.2.1.2.11 DDSAPI_Message::addDestination
bool DDSAPI_Message::addDestination (

std::string destinationName,

std::string hostName,

std::string path,

std::string username,

std::string password,
DDSXML_Destination::DDSXML_DestinationTransferType transferType,
DDSXML_User * user =0

)

This method adds a new destination to the user defined destination list.

D41044-01C
Page 44

Parameters:

destinationName The name for this destination.
hostName The hostname or IP address.
path The destination path.
username The username for the destination FTP server.
password The password for the destination FTP server.
transferType The transferType for the destination.
user The user that is requesting this API call.

Returns:

bool True if added OK to the Server, false if not.
6.2.1.2.12 DDSAPI_Message::addNewDestination
std::string DDSAPI_Message::addNewDestination (

std::string destinationName,

std::string hostName,

std::string path,

std::string username,

std::string password,

DDSXML_Destination::DDSXML_DestinationTransferType transferType,

DDSXML_User *user =0

)

This method adds a new destination to the user defined destination list.
Parameters:

destinationName The name for this destination.
hostName The hostname or IP address.
path The destination path.

username The username for the destination FTP server. Not required for a
local destination

password The password for the destination FTP server. Not required for a
local destination

D41044-01C
Page 45

transferType The transferType for the destination.
user The user that is requesting this API call.
Returns:

std::string Destination ID or "" if there was an error.

6.2.1.2.13 DDSAPI_Message::deleteDestination
bool DDSAPI_Message::deleteDestination (

DDSXML_Destination * destination,
DDSXML_User *user =0

)

This method removes a user defined destination from the user destination list.

The caller still owns the pointer passed in. The API will not delete the pointer.
Parameters:

destination The destination to be removed from the destination list.
user The user that is requesting this API call.

Returns:

bool True - if successful, False - if failed
6.2.1.2.14 DDSAPI_Message::getDestinations
std::vector< DDSXML_Destination*> DDSAPI_Message::getDestinations (

DDSXML_User * user =0

)

This method returns all of the user’s defined destinations in a vector to the caller.
These destinations are owned by the caller and must be deleted. The caller still
owns the pointer passed in. The API will not delete the pointer. The pointers point
to memory that is owned by the caller and it is the responsibility of the user to

free this memory.
Parameters:

user The user that is requesting this API call.
Returns:

D41044-01C
Page 46

std::vector< DDSXML_Destination*> The vector containing all user-defined
destinations.

6.2.1.2.15 DDSAPI_Message::getDestination
virtual DDSXML_Destination* DDSAPI_Message::getDestination (

std::string userindex,

DDSXML_User * user =0

)

This method returns the destination identified by the destination ID if it exists in
the system The caller still owns the pointer passed in. The API will not delete the
pointer. The pointer point to memory that is owned by the caller and it is the

responsibility of the user to free this memory.
Parameters:

userindex The userindex to check for
user The user that is requesting this API call.
Returns:

DDSXML_Destination* A pointer to the destination . O - The destination was
not found. Valid pointer otherwise.

6.2.1.2.16 DDSAPI_Message::modifyDestination
bool DDSAPI_Message::modifyDestination (

DDSXML_Destination * destination,
DDSXML_User *user =0

)

This method modifies the user destination. The caller still owns the pointer

passed in. The API will not delete the pointer.
Parameters:

destination The user defined destination to be modified.
user The user of this command
Returns:

D41044-01C
Page 47

bool True - if successful, False - if failed
6.2.1.2.17 DDSAPI_Message::getDataProductList
DDSXML_DataProductList* DDSAPI_Message::getDataProductList (

DDSXML_User *user =0

)

This method returns a DDSXML_DataProductList object to the user that contains
all the possible data products that the user application may request based on the
username and role. The user may then filter data products using the
DataProductList object. The caller still owns the pointer passed in. The AP will
not delete the pointer. The pointers point to memory that is owned by the caller

and it is the responsibility of the user to free this memory.
Parameters:

user The user that is requesting this API call.
Returns:

DDSXML_DataProductList* The pointer to the data product filter list
6.2.1.2.18 DDSAPI_Message::getFilteredDataProductList
DDSXML_DataProductList* DDSAPI_Message::getFilteredDataProductList (

DDSXML_User * user,
DDSXML_Request::DDSXML_RequestTypes requestType

)
This method returns a DDSXML_DataProductList object to the user that contains

all the possible data products that the user application may request based on the

username and role, restricted by those applicable to the supplied request type
Parameters:

user The user that is requesting this API call.

requestType The request type against which the products will initially be
filtered

Returns:

D41044-01C
Page 48

DDSXML_DataProductList The pointer to the data product filter list
6.2.1.2.19 DDSAPI_Message::createRequest
DDSXML_Request* DDSAPI_Message::.createRequest (

DDSXML_Request::DDSXML_RequestTypes requestType =
DDSXML_Request::SDR_EDR _IP_REQUEST_TYPE,

DDSXML_Request::DDSXML_ImplementationRequestTypes implType =
DDSXML_Request::DEFAULT _IMPL_REQUEST_TYPE,

DDSXML_User *user =0

)

This method instantiates a Request and returns a pointer to the instantiation.
This is owned by the caller and should be deleted by the user. This must be
added to the Server using addRequest. The caller still owns the pointer passed
in. The API will not delete the pointer. The pointers point to memory that is

owned by the caller and it is the responsibility of the user to free this memory.
Parameters:

requestType The request type to use in this API call

implType The implType type to use in this API call

user The user that is requesting this API call.
Returns:

DDSXML_Request* A pointer to the newly constructed DDSXML_Request
6.2.1.2.20 DDSAPI_Message::createTemplateFromRequest
DDSXML_Request®* DDSAPI_Message::createTemplateFromRequest (

std::string requestID,
DDSXML_User *user =0

)

This method creates a Template using data from an existing request and returns
a pointer to the instantiation. This is owned by the caller and should be deleted

by the user. This must be added to the Server using addRequest. The caller still

D41044-01C
Page 49

owns the pointer passed in. The API will not delete the pointer. The pointer point
to memory that is owned by the caller and it is the responsibility of the user to

free this memory.
Parameters:

requestID The ID of the template to be copied.
user The user that is requesting this API call.
Returns:

DDSXML_Request* A pointer to the newly constructed DDSXML_Request
6.2.1.2.21 DDSAPI_Message::.createRequestFromTemplate
DDSXML_Request®* DDSAPI_Message::.createRequestFromTemplate (

std::string requestID,

DDSXML_User *user =0

)

This method creates a Request using data from an existing template and returns
a pointer to the instantiation. This is owned by the caller and should be deleted
by the user. This must be added to the Server using addRequest. The caller still
owns the pointer passed in. The API will not delete the pointer. The pointers point
to memory that is owned by the caller and it is the responsibility of the user to

free this memory.
Parameters:

requestlD The ID of the template to be copied.
user The user that is requesting this API call.
Returns:

DDSXML_Request* A pointer to the newly constructed DDSXML_Request
6.2.1.2.22 DDSAPI_Message::addRequest
bool DDSAPI_Message::addRequest (

DDSXML_Request * request,

DDSXML_User * user =0

D41044-01C
Page 50

)

This method adds the request to the Request Server. This can be any request,
Template or modified request. The caller still owns the pointer passed in. The

API will not delete the pointer.
Parameters:

request The request to be added to the Server.
user The user that is requesting this API call.
Returns:

bool - True if submitted OK, False if not
6.2.1.2.23 DDSAPI_Message::findRequest
DDSXML_Request®* DDSAPI_Message::findRequest (

std::string requestID,

DDSXML_Request::DDSXML_ImplementationRequestTypes implType,

DDSXML_Request::DDSXML_RequestTypes requestType =
DDSXML_Request::UNKNOWN_REQUEST _TYPE,

bool templateFlag = false,

DDSXML_User * user =0

)

This method returns the Request* that references the request that had a request
ID equal to requestID. The caller still owns the pointer passed in. The API will not
delete the pointer. The pointers point to memory that is owned by the caller and it

is the responsibility of the user to free this memory.
Parameters:

requestlD The request ID for the request to be found.
implType The implType type to use in this API call
requestType The request type to use in this API call
templateFlag True to verify if this is a template

user The user that is requesting this API call.

D41044-01C
Page 51

Returns:

DDSXML_Request* a pointer to the request found in the system that matches
the ID passed in.
6.2.1.2.24 DDSAPI_Message::getRequests

std::vector<DDSXML_Request*> DDSAPI_Message::getRequests (
DDSXML_Request::DDSXML_ImplementationRequestTypes implType,

DDSXML_Request::DDSXML_RequestTypes requestType =
DDSXML_Request::UNKNOWN_REQUEST _TYPE,

bool templateFlag = false,
bool allRequests = false,

DDSXML_User *user =0

)

This method will return all Requests for the user as a vector of Request*. The
caller still owns the pointer passed in. The API will not delete the pointer. The
pointers point to memory that is owned by the caller and it is the responsibility of

the user to free this memory.
Parameters:

implType The implType type to use in this API call
requestType The request type to use in this API call
templateFlag True to verify if this is a template
allRequests True to add in all request
user The user that is requesting this API call.
Returns:
std::vector<DDSXML_Request> The vector of strings that contain the user's
possible roles.
6.2.1.2.25 DDSAPI_Message::suspendRequest
bool DDSAPI_Message::suspendRequest (

std::string requestID,

D41044-01C
Page 52

Int64 duration = -1,

DDSXML_User *user =0

)

This method suspends the request referenced by the requestID. The user may
also provide a duration. If no values are given then all data products within the
request are suspended indefinitely. The caller still owns the pointer passed in.

The API will not delete the pointer.
Parameters:

requestID The ID of the request to be suspended.

duration The duration for the suspension in seconds. If this value is -1, the
data product(s) will be suspended indefinitely.

user The user that is requesting this API call.
Returns:

bool True - if successful, False - if failed
6.2.1.2.26 DDSAPI_Message::resumeRequest
bool DDSAPI_Message::resumeRequest (

std::string requestID,
DDSXML_User *user =0

)

This method resumes data products specified by the requestID. The caller still

owns the pointer passed in. The API will not delete the pointer.
Parameters:

requestID The ID of the request to be resumed.
user The user that is requesting this API call.
Returns:

bool True - if successful, False - if failed
6.2.1.2.27 DDSAPI_Message::deleteRequest
bool DDSAPI_Message::deleteRequest (

D41044-01C
Page 53

std::string requestID,
DDSXML_User *user =0
)

This method deletes a request from the system based on the request ID given as
a parameter. The caller still owns the pointer passed in. The API will not delete

the pointer.
Parameters:

requestID The ID of the request to be deleted.
user The user that is requesting this API call.
Returns:

bool True - if successful, False - if failed
6.2.1.2.28 DDSAPI_Message::deleteAllRequests
bool DDSAPI_Message::deleteAllIRequests (

DDSXML_User * user

)

This method deletes all requests from the system for the logged in user. The

caller still owns the pointer passed in. The API will not delete the pointer.
Parameters:

user The user that is requesting this API call.
Returns:

bool True - if successful, False - if failed
6.2.1.2.29 DDSAPI_Message::getNumberOfRequests
int DDSAPI_Message::getNumberOfRequests (

DDSXML_Request::DDSXML_ImplementationRequestTypes implType,

DDSXML_Request::DDSXML_RequestTypes requestType =
DDSXML_Request::UNKNOWN_REQUEST_TYPE,

bool templateFlag = false,

D41044-01C
Page 54

DDSXML_User * user =0

)

This method returns the number of requests in the system The caller still owns

the pointer passed in. The API will not delete the pointer.
Parameters:

implType The implType type to use in this API call

requestType The request type to use in this API call

templateFlag True to verify if this is a template

user The user that is requesting this API call.
Returns:

int the number of requests in the system.
6.2.1.2.30 DDSAPI_Message::transferRequest
bool DDSAPI_Message::transferRequest (

std::string requestID,
DDSXML_User * fromUser,
DDSXML_User * toUser =0

)

This method transfers the request referenced by the requestID. The caller still

owns the pointer passed in. The API will not delete the pointer.
Parameters:

requestID The ID of the request to be suspended

fromUser The user to transfer the request from

toUser The user to transfer the request to
Returns:

bool True - if successful, False - if failed
6.2.1.2.31 DDSAPI_Message::getUpdatelDs
std::vector<std::string> DDSAP|_Message::getUpdatelDs (

DDSXML_Request::DDSXML_RequestTypes requestType =

D41044-01C
Page 55

DDSXML_Request::UNKNOWN_REQUEST_TYPE,
DDSXML_User *user =0
)
This method returns all IDs of updated requests, catalogs, and templates
Parameters:

requestType The request type to use in this API call
user The user that is requesting this API call.
Returns:

vector<string> The vector containing the ID strings.
6.2.1.2.32 DDSAPI_Message::getDeletedIDs
std::vector<std::string> DDSAPI_Message::getDeleted|Ds (

DDSXML_Request::DDSXML_RequestTypes requestType =
DDSXML_Request::UNKNOWN_REQUEST TYPE,

DDSXML_User *user =0
)
This method returns all IDs of deleted requests, catalogs, and templates
Parameters:

requestType The request type to use in this API call
user The user that is requesting this API call.
Returns:

vector<string> The vector containing the ID strings
6.2.1.2.33 DDSAPI_Message::getUsername
std::string DDSAPI_Message::getUsername (

)
This method returns the username as a string.
Returns:

std::string The username of the current user.

D41044-01C
Page 56

6.2.1.2.34 DDSAPI_Message::getVersion
std::string DDSAPI_Message::getVersion (

)
This method returns the code/XML version as a string.
Returns:

std::string The current version of the DDSAPI_Message
6.2.1.2.35 DDSAPI_Message::getClient
std::string DDSAPI_Message::getClient (

)
This method returns the clientType as a string.
Returns:

std::string The client type (i.e. API, GUI, HANDLER)
6.2.1.2.36 DDSAPI_Message::getRole
std::string DDSAPI_Message::getRole (

)
This method returns the user's role as a string.
Returns:

std::string The role that the user is currently logged in as
6.2.1.2.37 DDSAPI_Message::getDomain
std::string DDSAPI_Message::getDomain (

)
This method returns the domain of the Request Server.
Returns:

std::string The Request Server's domain.
6.2.1.2.38 DDSAPI_Message::getSubDomain
std::string DDSAPI_Message::getSubDomain (

)

This method returns the sub-domain of the Request Server.

Returns:

std::string The Request Server's sub-domain.
6.2.1.2.39 DDSAPI_Message::getUsers
DDSXML_UserList* DDSAPI_Message::getUsers (

)
This method returns the sub users of this User (if any).
Returns:

DDSXML_UserList The Sub User list.

6.2.1.2.40 DDSAPI_Message::addDestinationSetEntry
std::string DDSAPI_Message::addDestinationSetEntry (

originalDestination
destinationName
hostname

path

ftpUsername
ftpPassword
transferType

user

)

This method adds a new destination Entry to the destination Set.

Parameters:

DDSXML_Destination *originalDestination,
std::string destinationName,
std::string hostName,

D41044-01C
Page 57

D41044-01C
Page 58

std::string path,
std::string ftpUserName,
std::string ftpPassword,
DDSXML_Destination::DDSXML_DestinationTransferType transferType,
DDSXML_User* user =0

Returns:

std::string Destination ID or "" if there was an error.

6.2.1.2.41 DDSAPI_Message::deleteDestinationSetEntry
bool DDSAPI_Message::deleteDestinationSetEntry (

destination
destinationEntrylD
user

)

This method removes a user defined destination set from the user destination

and if the last entry then removes the destination from the User destination list.
Parameters:

DDSXML_Destination* destination,
std::string destinationEntryID,
DDSXML_User* user =0

Returns:

bool True if OK, False if not.

6.2.1.2.42 DDSAPI_Message::modifyDestinationSetEntry
bool DDSAPI_Message::modifyDestinationSetEntry (

originalDestination
destinationEntry

subUser)

D41044-01C

This method modifies the Destination Entry in the Destination.
Parameters:

DDSXML_Destination *originalDestination,
DDSXML_DestinationEntry *destinationEntry,
DDSXML_User* subUser =0

Returns:

bool True - if successful, False - if failed

6.2.1.2.43 DDSAPI_Message::moveDestinationSetEntry
bool DDSAPI_Message::moveDestinationSetEntry (

originalDestination
originalEntrylD
newDestination
newEntry

subUser

)

This method moves the Destination Entry from one destination to another

destination.
Parameters:

DDSXML_Destination *originalDestination,
std::string originalEntryID,
DDSXML_Destination *newDestination,
DDSXML_DestinationEntry *newEntry,
DDSXML_User *subUser = 0

Returns:

bool True - if successful, False - if failed

Page 59

D41044-01C
Page 60

6.2.2 DDSXML_CatalogRequest Class Reference

This is the XML data class for the Catalog. This class is responsible for storing
and maintaining the state of a catalog Request in the system. This class is not to
be created outside of the API. The Class diagram representing the
DDSAPI_CatalogRequest Class is provided in Figure 6.2.2-1,
DDSXML_CatalogRequest UML Diagram.

DDSAPI_Message

DDSXML_Request

DDSXML_ProductRequest

DDSXML_CatalogRequest

Figure 6.2.2-1, DDSXML_CatalogRequest UML Diagram

6.2.2.1 DDSXML_CatalogRequest Class Functions
6.2.2.1.1 DDSXML_CatalogRequest::getURID
std::string DDSXML_CatalogRequest::getURID (

)
Obtains the catalog's URID and returns it.

Returns:

std::string The catalog's URID as a string Empty string is not found

D41044-01C
Page 61

6.2.2.1.2 DDSXML_CatalogRequest::setURID
bool DDSXML_CatalogRequest::setURID (

std::string id
)
Set the catalog URID to query on

Parameters:

id The catalog URID to query on
Returns:

bool True if OK, else false

6.2.3 DDSXML_DataProduct Class Reference

This class is responsible for handling the data product XML. It creates, reads,
writes, and extracts the data from/to the XML. It also allows for validation of the
data. If the data and XML are validated then no invalid XML should be sent
across the API. Some of the method names are left to be compatible with the old
API. Note that all data is now inside xml. This includes a list of data product

messages.

The Class diagram representing the DDSXML_DataProduct Class is provided in
Figure 6.2.3-1, DDSXML_DataProduct UML Diagram.

D41044-01C

DDSAPI_Message

DDSXML_DataProductList

DDSXML_DataProduct

Figure 6.2.3-1, DDSXML_DataProduct UML Diagram

6.2.3.1 DDSXML_DataProduct Class Functions
6.2.3.1.1 DDSXML_DataProduct::getDataProductID
std::string DDSXML_DataProduct::getDataProductID (

)

This method returns the Data Product ID as a string. This is from the

configuration file. It is a merge of the shortname and the spacecraft name.

Returns:

std::string the Data Product's ID
6.2.3.1.2 DDSXML_DataProduct::getProductShortName
std::string DDSXML_DataProduct::getProductShortName (

)
This method retrieves the Shortname. This is from the configuration file.
Returns:

std::string The Data Product's shorthame.

Page 62

D41044-01C
Page 63

6.2.3.1.3 DDSXML_DataProduct::getSensor
std::string DDSXML_DataProduct::getSensor (

)

This method returns the sensor for this data product as a string. This is from the

configuration file.
Returns:

std::string The Data Product's sensor
6.2.3.1.4 DDSXML_DataProduct::getSpacecraft
std::string DDSXML_DataProduct::getSpacecraft (

)
This method returns the spacecraft as a string. This is from the configuration file.

For ANC data products the spacecraft will be the mission name (e.g. NPP,
NPOESS), for all other data products the spacecraft will be the platform short
name (e.g. NPP, NO1, NO2)

Returns:

std::string The spacecraft
6.2.3.1.5 DDSXML_DataProduct::getProductType
std::string DDSXML_DataProduct::getProductType (

)

This method returns the data product type as a string. This is from the

configuration file.
Returns:

std::string The Data Product's type
6.2.3.1.6 DDSXML_DataProduct::getRequestType
std::string DDSXML_DataProduct::getRequestType (

)

This method returns the data product Request type as a string. This is from the

D41044-01C
Page 64

configuration file.
Returns:

std::string The Data Product's request type
6.2.3.1.7 DDSXML_DataProduct::getPriority
std::string DDSXML_DataProduct::getPriority (

)

This method returns the Priority as a string. This is from the configuration file.
Returns:

std::string The Data Product's type
6.2.4 DDSXML_DataProductList Class Reference
This class is responsible for handling the data product List XML. It creates,
reads, writes and extracts the data from/to the XML. It also allows for validation
of the data. If the data and XML is validated then no invalid XML should be sent
across the API. This is used for the initial configuration from the Server. The

request uses an ID list only.

The Class diagram representing the DDSXML_DataProductList Class is provided
in Figure 6.2.4-1, DDSXML_DataProductList UML Diagram.

DDSAPI_Message

DDSXML_DataProductList

Figure 6.2.4-1, DDSXML_DataProductList UML Diagram

D41044-01C
Page 65

6.2.4.1 DDSXML_DataProductList Class Functions
6.2.4.1.1 DDSXML_DataProductList::addDataProduct
bool DDSXML_DataProductList::addDataProduct (

DDSXML_DataProduct * dataProduct
)
This method adds the data Product to this list.
Parameters:

dataProduct The data Product
Returns:

bool True if OK, else false
6.2.4.1.2 DDSXML_DataProductList::deleteDataProduct
virtual bool DDSXML_DataProductList::deleteDataProduct (

std::string dpID
)
Allows the caller to delete a data product from the list
Parameters:

dplID Deletes data product based on data product ID
Returns:

bool True if OK, else false
6.2.4.1.3 DDSXML_DataProductList::getDataProductsSet
std::set<DDSXML_DataProduct* >
DDSXML_DataProductList::getDataProductsSet (

)
This method returns the DataProducts. Caller owns the data products returned.
Returns:

set<DataProduct* > The Data Product's

D41044-01C
Page 66

6.2.4.1.4 DDSXML_DataProductList::getDataProducts
std::vector<DDSXML_DataProduct* >

DDSXML_DataProductList::getDataProducts (

)

This method returns the DataProducts. Caller owns the data products returned.
Returns:

vector<DataProduct* > The Data Product's
6.2.4.1.5 DDSXML_DataProductList::getDataProductList
DDSXML_DataProductList* DDSXML_DataProductList::getDataProductList (

DDSXML_DataProductIDList * dataProductIDList

)

This method returns the DataProducts for the DataProduct ID's passed in. Caller

owns the data products returned.
Parameters:

dataProductIDList The list of Data product ID's to get Data products for.
Returns:

DDSXML_DataProductList* The Data Product's
6.2.4.1.6 DDSXML_DataProductList::getFilteredList
std::vector<c DDSXML_DataProduct*> DDSXML_DataProductList::getFilteredList

(

std::string shorthname ="",

std::string spacecraft = "",

std::string sensor =",

std::string productType = "",

std::string requestType =

D41044-01C
Page 67

This method returns a filtered vector of DataProduct pointers that matches the
parameters provided by the user. If no data product(s) match the parameters
provided, an empty vector is returned.
Parameters:
shortname The Shortname of the Data Product. The empty string represents
all shortnames.
spacecraft The spacecraft. The empty string represents all spacecraft.

sensor The sensor. The empty string represents all sensors.

productType The data product productType. The empty string represents all
categories.

requestType The data product requestType. The empty string represents all
requestTypes.

Returns:
std::vector< DDSXML_DataProduct*> The vector of DDSXML_DataProducts

that contain all the Data Products, requestable by the user, that meet the
filter criteria.

6.2.4.1.7 DDSXML_DataProductList::getFilteredDataProductList
DDSXML_DataProductList*
DDSXML_DataProductList::getFilteredDataProductList (

std::string shorthame ="",

std::string spacecraft = "",

std::string sensor = "",
std::string requestType =",
std::string productType = ""

)

This method returns a filtered vector of DataProduct pointers that match the
parameters provided by the user. If no data product(s) match the parameters

provided, an empty vector is returned.

Parameters:

D41044-01C
Page 68

shortname The Shortname of the Data Product. The empty string represents
all shortnames.

spacecraft The spacecraft. The empty string represents all spacecraft.

sensor The sensor. The empty string represents all sensors.

productType The data product productType. The empty string represents all
categories.

requestType The data product requestType. The empty string represents all
requestTypes.

Returns:
DDSXML_DataProductList* The DDSXML_DataProductList of

DDSXML_DataProducts that contain all the Data Products, requestable by
the user, that meet the filter criteria.

6.2.4.1.8 DDSXML_DataProductList::getShortnames
std::vector<std::string> DDSXML_DataProductList::getShorthames (

)

This method returns a vector of Shortnames that can be used to query as a

parameter in getFilteredList.
Returns:

std::vector<std::string> A vector of strings that contain all possible,
requestable data product shortnames.
6.2.4.1.9 DDSXML_DataProductList::getSpacecrafts

std::vector<std::string> DDSXML_DataProductList::getSpacecrafts (
)

This method returns a vector of Spacecraft that can be used to query as a

parameter in getFilteredList.
Returns:

std::vector<std::string> A vector of strings that contain all possible,
requestable spacecraft.
6.2.4.1.10 DDSXML_DataProductList::getSensors

std::vector<std::string> DDSXML_DataProductList::getSensors (

)

D41044-01C
Page 69

This method returns a vector of Sensors that can be used to query as a

parameter in getFilteredList.
Returns:

std::vector<std::string> A vector of strings that contain all possible,
requestable categories.

6.2.4.1.11 DDSXML_DataProductList::getProductTypes
std::vector<std::string> DDSXML_DataProductList::getProductTypes (

)

This method returns a vector of Categories that can be used to query as a

parameter in getFilteredList.
Returns:

std::vector<std::string> A vector of strings that contain all possible,
requestable categories.

6.2.4.1.12 DDSXML_DataProductList::getRequestTypes
std::vector<std::string> DDSXML_DataProductList::getRequestTypes (

)

This method returns a vector of RequestTypes that can be used to query as a

parameter in getFilteredList. Example
Returns:

std::vector<std::string> A vector of strings that contain all possible,
requestable requestTypes.

6.2.4.1.13 DDSXML_DataProductList::getDataProduct
virtual DDSXML_DataProduct®* DDSXML_DataProductList::getDataProduct (

std::string dataProductID

)
This method returns the dataProduct identified by the dataProduct ID if it exists in

the system

Parameters:

D41044-01C
Page 70

dataProductID The dataProductID to check for
Returns:

int A pointer to the dataProduct . 0 - The dataProduct was not found. Valid
pointer otherwise.

6.2.4.1.14 DDSXML_DataProductList::hasDataProductID
virtual bool DDSXML_DataProductList::hasDataProductID (

std::string dataProductID
)

This method returns true if the dataProduct ID exists in the system
Parameters:

dataProductID The dataProductID to check for

Returns:

int A pointer to the dataProduct . 0 - The dataProduct was not found. Valid
pointer otherwise.

6.2.4.1.15 DDSXML_DataProductList::getNumberOfDataProducts
virtual int DDSXML_DataProductList::getNumberOfDataProducts (

)

This method returns the number of dataProducts for this user
Returns:

int The number of dataProducts for this user
6.25 DDSXML_DataShipment Class Reference
This class is responsible for handling the user shipment XML.

It creates, reads, writes and extracts the data from/to the XML. It also allows for
validation of the data. If the data and XML is validated then no invalid XML
should be sent across the APIl. Some of the method names are left to be
compatible with the old API. This class was(is) exposed to external users so we

can not change the method names now.

The Class diagram representing the DDSXML_DataShipment Class is provided

D41044-01C
Page 71

in Figure 6.2.5-1, DDSXML_DataShipment UML Diagram.

DDSAPI_Message

DDSXML_DataShipment

Figure 6.2.5-1, DDSXML_DataShipment UML Diagram

6.2.5.1 DDSXML_DataShipment Class Enumerations

enum DDSXML_DataShipment::DDSXML_DataShipmentStates — Valid DDS
APl Commands that can be sent to the Server

6.2.5.2 DDSXML_DataShipment Class Functions
6.2.5.2.1 DDSXML_DataShipment::getRequestID
std::string DDSXML_DataShipment::getRequestID (

)
This method retrieves the Request ID as a string.
Returns:

std::string The Request ID.
6.2.5.2.2 DDSXML_DataShipment::getMessage
std::string DDSXML_DataShipment::getMessage (

)
This method retrieves the Message.
Returns:

std::string The message.
6.2.5.2.3 DDSXML_DataShipment::getURID
std::string DDSXML_DataShipment::getURID (

D41044-01C
Page 72

)
This method retrieves the URID.
Returns:

std::string The URID
6.2.5.2.4 DDSXML_DataShipment::getFileName
std::string DDSXML_DataShipment::getFileName (

)
This method retrieves the FileName.
Returns:

std::string The FileName associated with this shipment.
6.2.5.2.5 DDSXML_DataShipment::getTimestamp
Int64 DDSXML_DataShipment::getTimestamp (

)
This method retrieves the Timestamp in IET (microseconds).
Returns:

Int64 The Timestamp
6.2.5.2.6 DDSXML_DataShipment::getTransferTime
Int64 DDSXML_DataShipment::getTransferTime (

)
This method retrieves the TransferTime in IET (microseconds).
Returns:

Int64 The Transfer Time
6.2.5.2.7 DDSXML_DataShipment::getDataShipmentState
DDSXML_DataShipment::DDSXML_DataShipmentStates
DDSXML_DataShipment::getDataShipmentState (

)

This method retrieves the last state of this shipment

D41044-01C
Page 73

Returns:

DDSXML_DataShipmentStates The state associated with this shipment
6.2.5.2.8 DDSXML_DataShipment::getFTPUserName
std::string DDSXML_DataShipment::getFTPUserName (

)
This method retrieves the FTP User Name.
Returns:

std::string The FTPUserName.
6.2.5.2.9 DDSXML_DataShipment::getCollectionShortName
std::string DDSXML_DataShipment::getCollectionShortName (

)
This method retrieves the Collection Short Name.
Returns:

std::string The Collection Short Name.
6.2.5.2.10 DDSXML_DataShipment::getEmailAddress
std::string DDSXML_DataShipment::getEmailAddress (

)
This method retrieves the Email Address.
Returns:

std::string The EmailAddress
6.2.5.2.11 DDSXML_DataShipment::getHostName
std::string DDSXML_DataShipment::getHostName (

)
This method retrieves the Host Name or IP address.
Returns:

std::string The HostName.

D41044-01C
Page 74

6.2.5.2.12 DDSXML_DataShipment::getFilePath
std::string DDSXML_DataShipment::getFilePath (

)
This method retrieves the FilePath.
Returns:

std::string The FilePath.
6.2.5.2.13 DDSXML_DataShipment::getCheckSum
std::string DDSXML_DataShipment::getCheckSum (

)
This method retrieves the CheckSum of the HDF5 file shipped.
Returns:

std::string The CheckSum.
6.2.5.2.14 DDSXML_DataShipment::getFileSize
int DDSXML_DataShipment::getFileSize (

)
This method retrieves the File Size.
Returns:

std::string The FileSize
6.2.5.2.15 DDSXML_DataShipment::getDestinationID
std::string DDSXML_DataShipment::getDestinationID (

)
This method retrieves the Destination ID.
Returns:

std::string The Destination ID.
6.2.5.2.16 DDSXML_DataShipment::getDestinationName
std::string DDSXML_DataShipment::getDestinationName (

)

D41044-01C
Page 75

This method retrieves the Destination Name.
Returns:

std::string The Destination Name.
6.2.5.2.17 DDSXML_DataShipment::getMasterDestinationindex
std::string DDSXML_DataShipment::getMasterDestinationIndex (

)
This method retrieves the Master Destination Index.
Returns:

std::string The Master Destination Index.

D41044-01C
Page 76

6.2.6 DDSXML_Destination Class Reference
This class is responsible for handling the user destination XML.

It creates, reads, writes and extracts the data from/to the XML. It also allows for
validation of the data. If the data and XML is validated then no invalid XML
should be sent across the API. Some of the method names are left to be
compatible with the old API. This class was(is) exposed to external users so we

can not change the method names now.

The Class diagram representing the DDSXML_Destination Class is provided in
Figure 6.2.6-1, DDSXML_Destination UML Diagram.

DDSAPI_Message

DDSXML_Destination

Figure 6.2.6-1, DDSXML_Destination UML Diagram

6.2.6.1 DDSAPI_Message Class Attributes

std::string DDSXML_Destination::DDSXML_DestinationStatesName[4] — DDS
API Client type names

DDSXML_Destination::DDSXML_DestinationTransferTypeName[5] — DDS
API Client type names

6.2.6.2 DDSAPI_Message Class Enumerations

enum DDSXML_Destination::DDSXML_DestinationStates — Valid DDS API
Commands that can be sent to the Server

DDSXML_Destination::DDSXML_DestinationTransferType — Valid DDS API
Commands that can be sent to the Server

6.2.6.3 DDSAPI_Message Class Functions

D41044-01C
Page 77

6.2.6.3.1 DDSXML_Destination::getDestinationName
std::string DDSXML_Destination::getDestinationName (

)

This method retrieves the Destination Name as a string.

Returns:

std::string The destination Name or "" if not valid.
6.2.6.3.2 DDSXML_Destination::getUserPassword

std::string DDSXML_Destination::getUserPassword (
)

This method retrieves the myPassword attribute's value as a string. The value

returned will be clear text.

Returns:

std::string The password as a string or "" if not valid.
6.2.6.3.3 DDSXML_Destination::getPath

std::string DDSXML_Destination::getPath (

)

This method retrieves the myPath attribute's value as a string.

Returns:

std::string The destination path as a string or "" if not valid.
6.2.6.3.4 DDSXML_Destination::getHostName

std::string DDSXML_Destination::getHostName (

)

This method returns the destination host name (or IP) Note that this is really a

valid hostname or IP address that can be used for FTP.

Returns:

std::string The Host name as a string or "" if not valid.

D41044-01C

Page 78
6.2.6.3.5 DDSXML_Destination::getUserName
std::string DDSXML_Destination::getUserName (
)
This method retrieves the myUsername attribute's value as a string.
Returns:
std::string The username associated with this destination or " if not valid.

6.2.6.3.6 DDSXML_Destination::getOwner
DDSXML_User* DDSXML_Destination::getOwner (

)
This method retrieves the owner of this destination
Returns:

DDSXML_User The owner of this destination or NULL if not valid.
6.2.6.3.7 DDSXML_Destination::getState
DDSXML_Destination::DDSXML_DestinationStates
DDSXML_Destination::getState (

)

This method retrieves the last state of this destination
Returns:

DDSXML_DestinationStates The state associated with this destination
6.2.6.3.8 DDSXML_Destination::getStateName
std::string DDSXML_Destination::getStateName (

)
This method retrieves the last state of this destination as a string
Returns:

std::string The state name as a string
6.2.6.3.9 DDSXML_Destination::getTransferType
DDSXML_Destination::DDSXML_DestinationTransferType

D41044-01C
Page 79

DDSXML_Destination::getTransferType (

)
This method retrieves the transfer Type of this destination
Returns:

DDSXML_DestinationTransferType The transfer Type
6.2.6.3.10 DDSXML_Destination::getTransferTypeName
std::string DDSXML_Destination::getTransferTypeName (

)
This method retrieves the transfer Type name.
Returns:

std::string The transfer Type name
6.2.6.3.11 DDSXML_Destination::setDestinationName
bool DDSXML_Destination::setDestinationName (

const std::string & destinationName
)
This method sets the name of the destination. This is a user defined name.
Parameters:

destinationName The name used to set destination name.
Returns:

bool True if set OK, False if not.
6.2.6.3.12 DDSXML_Destination::setUserPassword
bool DDSXML_Destination::setUserPassword (

const std::string & password

)
This method sets the FTP Password.

Parameters:

password The password.
Returns:

bool True if set OK, False if not.
6.2.6.3.13 DDSXML_Destination::setPath
bool DDSXML_Destination::setPath (

const std::string & path
)
This method sets the Path.
Parameters:

path The path.
Returns:

bool True if set OK, False if not.

6.2.6.3.14 DDSXML_Destination::setHostName

bool DDSXML_Destination::setHostName (

const std::string & hostName

)

D41044-01C
Page 80

This method sets the destination host name Note that this is really a valid

hostname or IP address that can be used for FTP.

Parameters:

hostName The host name.
Returns:

bool True if set OK, False if not.

6.2.6.3.15 DDSXML_Destination::setUserName

bool DDSXML_Destination::setUserName (

const std::string & userName

)
This method sets the FTP user.

D41044-01C
Page 81

Parameters:

userName The user name.
Returns:

bool True if set OK, False if not.
6.2.6.3.16 DDSXML_Destination::setOwner
bool DDSXML_Destination::setOwner (

DDSXML_User * owner
)
This method sets The owner of this destination
Parameters:

owner The owner of this destination.
Returns:

bool True if set OK, False if not.
6.2.6.3.17 DDSXML_Destination::setState
bool DDSXML_Destination::setState (

DDSXML_Destination::DDSXML_DestinationStates state
)
This method sets the state attribute in the Destination class.
Parameters:

state The state of the Destination.
Returns:

bool True if set OK, False if not.
6.2.6.3.18 DDSXML_Destination::setTransferType
bool DDSXML_Destination::setTransferType (

DDSXML_Destination::DDSXML_DestinationTransferType transferType

)

This method sets the transfer Type attribute in the Destination class. This will

D41044-01C
Page 82

allow the destination to be sent using different tranfer methods.
Parameters:

transferType The transfer Type of the Destination.
Returns:

bool True if set OK, False if not.
6.2.6.3.19 DDSXML_Destination::getUserIndex
std::string DDSXML_Destination::getUserindex (

)

This method returns the user Destination index

Returns:

std::string The user destination Index as a string or " if not valid.

6.2.6.3.20 DDSXML_Destination::getMasterindex
std::string DDSXML_Destination::getMasterindex (

)

This method returns the master Destination index

Returns:

std::string The Master Index as a string or "" if not valid.

6.2.6.3.21 DDSXML_Destination::getDestinationEntryName
std::string DDSXML_Destination::getDestinationEntryName (

)

This method retrieves the Destination Name as a string

Returns:

std::string The destination Name or "" if not valid.

6.2.6.3.22 DDSXML_Destination::getFTPUserPassword
std::string DDSXML_Destination::getFTPUserPassword (

)

D41044-01C
Page 83

This method retrieves the FTP Password attribute's value as a string. The value

returned will be cleartext

Returns:

std::string The FTP password as a string or "" if not valid.

6.2.6.3.23 DDSXML_Destination::getPath
std::string DDSXML_Destination::getPath (

)

This method retrieves the myPath attribute's value as a string.

Returns:

std::string The destination path as a string or "" if not valid.

6.2.6.3.24 DDSXML_Destination::getHostName
std::string DDSXML_Destination::getHostName (

)

This method returns the destination host name (or IP) Note that this is really a

valid hostname or IP address that can be used for FTP.

Returns:

std::string The Host name as a string or "" if not valid.

6.2.6.3.25 DDSXML_Destination::getFTPUserName
std::string DDSXML_Destination::getFTPUserName (

)

This method retrieves the FTP Username attribute's value as a string.

Returns:

std::string The FTP username associated with this destination or "" if not

valid.

D41044-01C
Page 84

6.2.6.3.26 DDSXML_Destination::getOwner
DDSXML_User DDSXML_Destination::getOwner (

)
This method retrieves the owner of this destinationEntry.
Returns:

DDSXML_User The owner of this destinationEntry or NULL if not valid.

6.2.6.3.27 DDSXML_Destination::getState
DDSXML_Destination::DDSXML_DestinationStates
DDSXML_Destination::getState (

)
This method retrieves the last state of this destinationEntry.
Returns:
DDSXML_DestinationEntryStates The state associated with this

destinationEntry

6.2.6.3.28 DDSXML_Destination::getStateName
std::string DDSXML_Destination::getStateName (

)
This method retrieves the last state of this destinationEntry as a string.
Returns:

std::string The state name as a string.

6.2.6.3.29 DDSXML_Destination::getTransferType
DDSXML_Destination::DDSXML_DestinationTransferType
DDSXML_Destination::getTransferType (

)

This method retrieves the transfer Type of this destinationEntry.

D41044-01C
Page 85

Returns:

DDSXML_DestinationTransferType The transfer Type.

6.2.6.3.30 DDSXML_Destination::getTransferTypeName
std::string DDSXML_Destination::getTransferTypeName (

)
This method retrieves the transfer Type name.
Returns:

std::string The transfer Type name.

6.2.6.3.31 DDSXML_Destination::setDestinationEntryName
bool DDSXML_Destination::setDestinationEntryName (

destinationName

)
This method sets the name of the destination. This is a user defined name.
Parameters:

const std::string& destinationName.
Returns:

bool True if set OK, False if not.

6.2.6.3.32 DDSXML_Destination::setFTPUserPassword
bool DDSXML_Destination::setFTPUserPassword (

password

)
This method sets the FTP Password.
Parameters:

const std::string& password.

D41044-01C
Page 86

Returns:

bool True if set OK, False if not.

6.2.6.3.33 DDSXML_Destination::setPath
bool DDSXML_Destination::setPath (

path

)
This method sets the Path.
Parameters:

const std::string& path
Returns:

bool True if set OK, False if not.

6.2.6.3.34 DDSXML_Destination::setHostName
bool DDSXML_Destination::setHostName (

hostName

)
This method sets the destination host name
Note that this is really a valid hostname or IP address that can be used for FTP.
Parameters:

const std::string& hostName
Returns:

bool True if set OK, False if not.

6.2.6.3.35 DDSXML_Destination::setFTPUserName
bool DDSXML_Destination::setFTPUserName (

userName

)
This method sets the FTP user.

Parameters:

const std::string& userName
Returns:

bool True if set OK, False if not.

6.2.6.3.36 DDSXML_Destination::setOwner
bool DDSXML_Destination::setOwner (

owner

)
This method sets the owner of this destination.
Parameters:

DDSXML_User* owner
Returns:

bool True if set OK, False if not.

6.2.6.3.37 DDSXML_Destination::setState
bool DDSXML_Destination::setState (

state

)

This method sets the state attribute in the Destination class.

Parameters:

DDSXML_Destination::DDSXML_DestinationStates state

Returns:

bool True if set OK, False if not.

D41044-01C
Page 87

D41044-01C
Page 88

6.2.6.3.38 DDSXML_Destination::setTransferType
bool DDSXML_Destination::setTransferType (

transferType

)

This method sets the transfer Type attribute in the Destination class. This will

allow the destinationEntry to be sent using different transfer methods.
.Parameters:

DDSXML_Destination::DDSXML_DestinationTransferType transferType

Returns:

bool True if set OK, False if not.
6.2.6.3.39 DDSXML_Destination::getEntrylndex
std::string DDSXML_Destination::getEntrylndex (

)

This method returns the user Destination Entry index.

Returns:

string The user destination Entry Index as a string or " if not valid.

D41044-01C
Page 89

6.2.7 DDSXML_GEORequest Class Reference
This is the XML data class for the GEO Request. This class is responsible for
storing and maintaining the state of a request in the system.

The Class diagram representing the DDSXML_GEORequest Class is provided in
Figure 6.2.7-1, DDSXML_GEORequest UML Diagram.

DDSAPI_Message

DDSXML_Request

DDSXML_ProductRequest

DDSXML_GEORequest

DDSXML_StandardRequest DDSXML_TemporalRequest DDSXML_Longitude DDSXML_Latitude DDSXML_QueryRequest

Figure 6.2.7-1, DDSXML_GEORequest UML Diagram

6.2.7.1 DDSXML_GEORequest Class Functions
6.2.7.1.1 DDSXML_GEORequest::getAgglinterval
Int64 DDSXML_GEORequest::getAgglinterval (

)

This method returns the value of Agglnterval. The time is in IET (microseconds).
getAgglntervalUsedFlag() must return true for this field to be valid.

getAggregationEnabled() must return true for this field to be valid.
Returns:

Int64 The aggregation interval.

D41044-01C
Page 90

6.2.7.1.2 DDSXML_GEORequest::getDelay
Int64 DDSXML_GEORequest::getDelay (

)

This method returns the delay for the request in IET. The time is in IET

(microseconds).
Returns:

Int64 The request's processing delay
6.2.7.1.3 DDSXML_GEORequest::getLowerRightLatitude
DDSXML_Latitude* DDSXML_GEORequest::getLowerRightLatitude (

)
This method returns the Lower Right Latitude. getGeospatialUsedFlag() must

return true for this field to be valid. isGeospatial() must return true for this field to
be valid. getLowerRightLatitudeUsedFlag() must return true for this field to be
valid. This memory is owned by the caller and should be freed/deleted by the

caller.
Returns:

DDSXML_Latitude* A pointer to a DDSXML_ Latitude* object that contains the
lower right latitude.
6.2.7.1.4 DDSXML_GEORequest::getLowerRightLongitude

DDSXML_Longitude* DDSXML_GEORequest::getLowerRightLongitude (

)

This method returns the Lower Right Longitude. getGeospatialUsedFlag() must
return true for this field to be valid. isGeospatial() must return true for this field to
be valid. getLowerRightLongitudeUsedFlag() must return true for this field to be
valid. This memory is owned by the caller and should be freed/deleted by the

caller.
Returns:

DDSXML_Longitude* A pointer to a DDSXML_Longitude* object that contains
the lower right longitude.

D41044-01C
Page 91

6.2.7.1.5 DDSXML_GEORequest::getUpperLeftLatitude
DDSXML_ Latitude* DDSXML_GEORequest::getUpperLeftLatitude (

)
This method returns the Upper Left Latitude. getGeospatialUsedFlag() must

return true for this field to be valid. isGeospatial() must return true for this field to
be valid. getUpperLeftLatitudeUsedFlag() must return true for this field to be
valid. This memory is owned by the caller and should be freed/deleted by the

caller.
Returns:
DDSXML_ Latitude* A pointer to a DDSXML_ Latitude* object that contains the
upper left latitude.

6.2.7.1.6 DDSXML_GEORequest::getUpperLeftLongitude
DDSXML_Longitude* DDSXML_GEORequest::getUpperLeftLongitude (

)

This method returns the Upper Left Longitude. getGeospatialUsedFlag() must
return true for this field to be valid. isGeospatial() must return true for this field to
be valid. getUpperLeftLongitudeUsedFlag() must return true for this field to be
valid. This memory is owned by the caller and should be freed/deleted by the

caller.
Returns:
DDSXML_Longitude* A pointer to a DDSXML_Longitude* object that contains
the upper left longitude.

6.2.7.1.7 DDSXML_GEORequest::getStartOrbitRevolution
int DDSXML_GEORequest::getStartOrbitRevolution (

)

This method returns the starting orbit revolution for the request. This must be
between getMinimumOrbitRevolution() and getMaximumOrbitRevolution();
getStartOrbitRevolutionUsedFlag() must return true for this field to be valid.
getOrbitIDEnabled() must return true for this field to be valid.

D41044-01C
Page 92

Returns:

int The orbit revolution number.
6.2.7.1.8 DDSXML_GEORequest::getEndOrbitRevolution
int DDSXML_GEORequest::getEndOrbitRevolution (

)

This method returns the last orbit revolution for the request. This must be
between getMinimumOrbitRevolution() and getMaximumOrbitRevolution();
getStartOrbitRevolutionUsedFlag() must return true for this field to be valid.
getOrbitIDEnabled() must return true for this field to be valid.

Returns:

int The orbit revolution number.
6.2.7.1.9 DDSXML_GEORequest::getRepaired
bool DDSXML_GEORequest::getRepaired (

)

This method returns the Repaired flag If true then repaired data will be sent for

this request. getRepairedUsedFlag() must return true for this field to be valid.
Returns:

bool The repaired status flag.
6.2.7.1.10 DDSXML_GEORequest::getPackageState
bool DDSXML_GEORequest::getPackageState (

)

This method returns the package state of the request. If true then data will be
packaged for this request. getPackageStateUsedFlag() must return true for this
field to be valid.

Returns:

bool The package state of the request.
6.2.7.1.11 DDSXML_GEORequest::isGeospatial
bool DDSXML_GEORequest::isGeospatial (

D41044-01C
Page 93

)

This method returns the status of the geospatial subset. If this is true all four
Latitude and Longitude elements must be filled in. getGeospatialUsedFlag() must

return true for this field to be valid.
Returns:

bool true = The geospatial subset is on false = The geospatial subset is off
6.2.7.1.12 DDSXML_GEORequest::setAgglinterval
bool DDSXML_GEORequest::setAgglinterval (

Int64 agginterval
)

This method sets the Agglinterval. The time is in IET (microseconds). This must
be between getMinimumAggregationinterval() and
getMaximumAggregationinterval(); getAggintervalUsedFlag() must return true for
this field to be valid. setAggregationEnabled() must be set to true for this field to

be valid.
Parameters:

agglnterval The aggregation interval.
Returns:

bool - True if OK, else false
6.2.7.1.13 DDSXML_GEORequest::setDelay
bool DDSXML_GEORequest::setDelay (

Int64 delay

)

This method sets the delay. The time is in IET (microseconds). This must be
between getMinimumDelay() and getMaximumDelay(); getDelayUsedFlag() must

return true for this field to be valid. If set to 0 there is no delay.

Parameters:

D41044-01C
Page 94

delay The delay interval.
Returns:

bool - True if OK, else false
6.2.7.1.14 DDSXML_GEORequest::setGeospatial
bool DDSXML_GEORequest::setGeospatial (

bool geospatialFlag

)

This method sets the geospatialFlag. If this is set all four Latitude and Longitude
elements must be filled in. getGeospatialUsedFlag() must return true for this field

to be valid.
Parameters:

geospatialFlag is the GeoSpatialSubset active
Returns:

bool - True if OK, else false
6.2.7.1.15 DDSXML_GEORequest::setLowerRightLatitude
bool DDSXML_GEORequest::setLowerRightLatitude (

bool isNegative,
int degrees,

int minutes,
float seconds

)

This method sets the Lower Right Latitude. getGeospatialUsedFlag() must return
true for this field to be valid. setGeospatial() must be set to true for this field to be
valid. getLowerRightLatitudeUsedFlag() must return true for this field to be valid.

This method will take a Latitude value that is -90 < deg < 90.

Parameters:

isNegative Specifies if the LatLong is negative

D41044-01C
Page 95

degrees The degrees value for the latitude or longitude as an integer.

minutes The minutes value for the latitude or longitude as an integer.

seconds The seconds value for the latitude or longitude as a float.
Returns:

e bool - True if OK, else false

6.2.7.1.16 DDSXML_GEORequest::setLowerRightLongitude
bool DDSXML_GEORequest::setLowerRightLongitude (

bool isNegative,
int degrees,
int minutes,

float seconds

)
This method sets the Lower Right Longitude getGeospatialUsedFlag() must

return true for this field to be valid. setGeospatial() must be set to true for this
field to be valid. getLowerRightLongitudeUsedFlag() must return true for this field
to be valid. This method will take a Lat Long value that is 179 < deg < 360 and
subtract 360 degrees from it, to put it in the -180 to +179 range. This will make
this lat long value go from a 0 to 359 positioning system to the DDS server
standard system of -180 to +179 (where zero in both systems are the same

place).

Parameters:

isNegative Specifies if the LatLong is negative

degrees The degrees value for the latitude or longitude as an integer.

minutes The minutes value for the latitude or longitude as an integer.

seconds The seconds value for the latitude or longitude as a float.

Returns:

e bool - True if OK, else false

D41044-01C
Page 96

6.2.7.1.17 DDSXML_GEORequest::setStartOrbitRevolution
bool DDSXML_GEORequest::setStartOrbitRevolution (

int orbitRevolution

)

This method sets the start orbit revolution for the Request. This must be between
getMinimumOrbitRevolution() and getMaximumOrbitRevolution();
getStartOrbitRevolutionUsedFlag() must return true for this field to be valid.
getOrbitIDEnabled() must return true for this field to be valid.

Parameters:

e orbitRevolution The new orbit revolution for the request.
Returns:

e bool - True if OK, else false

6.2.7.1.18 DDSXML_GEORequest::setUpperLeftLatitude
bool DDSXML_GEORequest::setUpperLeftLatitude (

bool isNegative,
int degrees,

int minutes,
float seconds

)
This method sets the Upper Left Latitude getGeospatialUsedFlag() must return

true for this field to be valid. setGeospatial() must be set to true for this field to be
valid. getUpperLeftLatitudeUsedFlag() must return true for this field to be valid.
This method will take a Latitude value that is -90 < deg < 90.

Parameters:
e isNegative Specifies if the LatLong is negative

e degrees The degrees value for the latitude or longitude as an integer.

D41044-01C
Page 97

e minutes The minutes value for the latitude or longitude as an integer.

e seconds The seconds value for the latitude or longitude as a float.
Returns:

e bool - True if OK, else false

6.2.7.1.19 DDSXML_GEORequest::setUpperLeftLongitude
bool DDSXML_GEORequest::setUpperLeftLongitude (

bool isNegative,
int degrees,

int minutes,
float seconds

)
This method sets the Upper Left Longitude getGeospatialUsedFlag() must return

true for this field to be valid. setGeospatial() must be set to true for this field to be
valid. getUpperLeftLongitudeUsedFlag() must return true for this field to be valid.
This method will take a Lat Long value that is 179 < deg < 360 and subtract 360
degrees from it, to put it in the -180 to +179 range. This will make this lat long
value go from a 0 to 359 positioning system to the DDS server standard system

of -180 to +179 (where zero in both systems are the same place).
Parameters:
e isNegative Specifies if the LatLong is negative
e degrees The degrees value for the latitude or longitude as an integer.
e minutes The minutes value for the latitude or longitude as an integer.
e seconds The seconds value for the latitude or longitude as a float.
Returns:

e bool - True if OK, else false

D41044-01C
Page 98

6.2.7.1.20 DDSXML_GEORequest::setEndOrbitRevolution
bool DDSXML_GEORequest::setEndOrbitRevolution (

int orbitRevolution

)

This method sets the end orbit revolution for the Request. This must be between
getMinimumOrbitRevolution() and getMaximumOrbitRevolution();
getStartOrbitRevolutionUsedFlag() must return true for this field to be valid.
getOrbitIDEnabled() must return true for this field to be valid.

Parameters:

e orbitRevolution The new orbit revolution for the request.
Returns:

e bool - True if OK, else false

6.2.7.1.21 DDSXML_GEORequest::setRepaired
bool DDSXML_GEORequest::setRepaired (

bool repaired
)
This method sets the Repaired flag
Parameters:
e repaired The new repaired state for the request.
Returns:
e bool - True if OK, else false

6.2.7.1.22 DDSXML_GEORequest::setPackageState
bool DDSXML_GEORequest::setPackageState (

bool state

)

Sets the state of each package in the request to the value passed in.

D41044-01C
Page 99

Parameters:

e state - The state of the package.
Returns:

e bool - True if OK, else false

6.2.7.1.23 DDSXML_GEORequest::getAgglintervalUsedFlag
bool DDSXML_GEORequest::getAgglintervalUsedFlag (

)

This method returns the value of the used flag True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.7.1.24 DDSXML_GEORequest::getDelayUsedFlag
bool DDSXML_GEORequest::getDelayUsedFlag (

)

This method returns the value of the used flag True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.7.1.25 DDSXML_GEORequest::getGeospatialUsedFlag
bool DDSXML_GEORequest::getGeospatialUsedFlag (

)

This method returns the value of the used flag True is returned if the value is

used in this request type.
Returns:

e bool True if used in this request type.

D41044-01C
Page 100

6.2.7.1.26 DDSXML_GEORequest::getLowerRightLatitudeUsedFlag
bool DDSXML_GEORequest::getLowerRightLatitudeUsedFlag (

)

This method returns the value of the used flag. True is returned if the value is

used in this request type. Caller owns the object returned
Returns:
e bool True if used in this request type.

6.2.7.1.27 DDSXML_GEORequest::getLowerRightLongitudeUsedFlag
bool DDSXML_GEORequest::getLowerRightLongitudeUsedFlag (

)

This method returns the value of the used flag. True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.7.1.28 DDSXML_GEORequest::getUpperLeftLatitudeUsedFlag
bool DDSXML_GEORequest::getUpperLeftLatitudeUsedFlag (

)

This method returns the value of the used flag. True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.7.1.29 DDSXML_GEORequest::getUpperLeftLongitudeUsedFlag
bool DDSXML_GEORequest::getUpperLeftLongitudeUsedFlag (

)

This method returns the value of the used flag. True is returned if the value is

used in this request type.

D41044-01C
Page 101

Returns:
e bool True if used in this request type.

6.2.7.1.30 DDSXML_GEORequest::getStartOrbitRevolutionUsedFlag
bool DDSXML_GEORequest::getStartOrbitRevolutionUsedFlag (

)

This method returns the value of the used flag. True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.7.1.31 DDSXML_GEORequest::getEndOrbitRevolutionUsedFlag
bool DDSXML_GEORequest::getEndOrbitRevolutionUsedFlag (

)

This method returns the value of the used flag. True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.7.1.32 DDSXML_GEORequest::getRepairedUsedFlag
bool DDSXML_GEORequest::getRepairedUsedFlag (

)

This method returns the value of the used flag. True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.7.1.33 DDSXML_GEORequest::getPackageStateUsedFlag
bool DDSXML_GEORequest::getPackageStateUsedFlag (

)

D41044-01C
Page 102

This method returns the value of the used flag. True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.7.1.34 DDSXML_GEORequest::getOrbitIDEnabled
bool DDSXML_GEORequest::getOrbitIDEnabled (

)
This method returns the value of the flag
Returns:
e bool True if enabled in this request.

6.2.7.1.35 DDSXML_GEORequest::setOrbitIDEnabled
bool DDSXML_GEORequest::setOrbitIDEnabled (

bool flag
)
This method sets the value of the flag
Parameters:
o flag True if this is enabled
Returns:
e bool - True if OK, else false

6.2.7.1.36 DDSXML_GEORequest::getAggregationEnabled
bool DDSXML_GEORequest::getAggregationEnabled (

)

This method returns the value of the flag
Returns:

e bool True if enabled in this request.

D41044-01C
Page 103

6.2.7.1.37 DDSXML_GEORequest::setAggregationEnabled
bool DDSXML_GEORequest::setAggregationEnabled (

bool flag
)
This method sets the value of the flag
Parameters:
e flag True if this is enabled
Returns:
e bool - True if OK, else false

6.2.7.1.38 DDSXML_GEORequest::getMinimumDelay
Int64 DDSXML_GEORequest::getMinimumDelay (

)
This method returns the MinimumDelay. This is in microseconds.
Returns:
¢ Int64 The MinimumDelay

6.2.7.1.39 DDSXML_GEORequest::getMaximumDelay
Int64 DDSXML_GEORequest::getMaximumDelay (

)
This method returns the MaximumbDelay. This is in microseconds.
Returns:
e Int64 The MaximumDelay

6.2.7.1.40 DDSXML_GEORequest::getMinimumAggregationinterval
Int64 DDSXML_GEORequest::getMinimumAggregationinterval (

)

This method returns the MinimumAggregationinterval. This is in microseconds.

D41044-01C
Page 104

Returns:
e Int64 The MinimumAggregationinterval

6.2.7.1.41 DDSXML_GEORequest::getMaximumAggregationinterval
Int64 DDSXML_GEORequest::getMaximumAggregationinterval (

)
This method returns the MaximumAggregationinterval. This is in microseconds.
Returns:
¢ Int64 The MaximumAggregationinterval

6.2.8 DDSXML_PeriodicRequest Class Reference
This is the XML data class for the Periodic Request. This class is responsible for

storing and maintaining the state of a request in the system.

The Class diagram representing the DDSXML_PeriodicRequest Class is
provided in Figure 6.2.8-1, DDSXML_PeriodicRequest UML Diagram.

DDSAPI_Message

DDSXML_Request

DDSXML_ProductRequest

DDSXML_PeriodicRequest

Figure 6.2.8-1, DDSXML_PeriodicRequest UML Diagram

D41044-01C
Page 105

6.2.8.1 DDSXML_PeriodicRequest Class Functions
6.2.8.1.1 DDSXML_PeriodicRequest::getDays
int DDSXML_PeriodicRequest::getDays (

)
This method returns the value of the days as an int
Returns:
e int The days for the request.

6.2.8.1.2 DDSXML_PeriodicRequest::setDays
bool DDSXML_PeriodicRequest::setDays (

int days
)
This method sets the days to the value specified by the parameter.
Parameters:
e days The days for the request.
Returns:
e bool - True if Ok, else error

6.2.8.1.3 DDSXML_PeriodicRequest::getHours
int DDSXML_PeriodicRequest::getHours (

)
This method returns the value of the Hours as an int
Returns:
e int The Hours for the request.

6.2.8.1.4 DDSXML_PeriodicRequest::setHours
bool DDSXML_PeriodicRequest::setHours (

int hours

D41044-01C
Page 106

)
This method sets the Hours to the value specified by the parameter.
Parameters:
e hours The Hours for the request.
Returns:
e bool - True if Ok, else error

6.2.8.1.5 DDSXML_PeriodicRequest::getMinutes
int DDSXML_PeriodicRequest::getMinutes (

)
This method returns the value of the Minutes as an int
Returns:
e int The Minutes for the request.

6.2.8.1.6 DDSXML_PeriodicRequest::setMinutes
bool DDSXML_PeriodicRequest::setMinutes (

int minutes
)
This method sets the Minutes to the value specified by the parameter.
Parameters:
e minutes The days for the request.
Returns:
e bool - True if Ok, else error

6.2.8.1.7 DDSXML_PeriodicRequest::getSeconds
int DDSXML_PeriodicRequest::getSeconds (

)

This method returns the value of the Seconds as an int

D41044-01C
Page 107

Returns:
e int The Seconds for the request.

6.2.8.1.8 DDSXML_PeriodicRequest::setSeconds
bool DDSXML_PeriodicRequest::setSeconds (

int seconds
)
This method sets the Seconds to the value specified by the parameter.
Parameters:
e seconds The Seconds for the request.
Returns:
e bool - True if Ok, else error

6.2.8.1.9 DDSXML_PeriodicRequest::getPeriodicityUsedFlag
bool DDSXML_PeriodicRequest::getPeriodicityUsedFlag (

)

This method returns the value of the used flag True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.8.1.10 DDSXML_PeriodicRequest::getPeriodicityEnabled
bool DDSXML_PeriodicRequest::getPeriodicityEnabled (

)

This method returns the value of the enabled flag True is returned if the value is

enabled in this request type.
Returns:

e bool True if enabled in this request type.

D41044-01C
Page 108

6.2.8.1.11 DDSXML_PeriodicRequest::setPeriodicityEnabled
bool DDSXML_PeriodicRequest::setPeriodicityEnabled (

bool flag

)

This method sets the value of the enabled flag True is enabled in this request

type.

Parameters:
e flag True if enabled for this request.
Returns:

e bool True if set, else false.

D41044-01C
Page 109

6.2.9 DDSXML_ProductRequest Class Reference
This is the XML data class for the Product Request. This class is responsible for

storing and maintaining the state of a request in the system.

The Class diagram representing the DDSXML_ProductRequest Class is provided
in Figure 6.2.9-1, DDSXML_ProductRequest UML Diagram.

DDSAPI_Message

DDSXML_Request

DDSXML_ProductRequest

DDSXML_PeriodicRequest DDSXML_CatalogRequest DDSXML_GEORequest

Figure 6.2.9-1, DDSXML_ProductRequest UML Diagram

D41044-01C
Page 110

6.2.10 DDSXML_QueryRequest Class Reference
This is the XML data class for the Query Request. This class is responsible for

storing and maintaining the state of a request in the system.

The Class diagram representing the DDSXML_QueryRequest Class is provided
in Figure 6.2.10-1, DDSXML_QueryRequest UML Diagram.

DDSAPI_Message

DDSXML_Request

DDSXML_ProductRequest

DDSXML_GEORequest

DDSXML_QueryRequest

Figure 6.2.10-1, DDSXML_QueryRequest UML Diagram

D41044-01C
Page 111

6.2.11 DDSXML_Request Class Reference

This is the base class for all Request types. This class is responsible for storing
and maintaining the base state of a request in the system. A Request is made up
of a product request type and an implementation request type. Based on the
selection made at creation time a specific request will be created and returned.
The request returned will be one of the implementation types. This will allow for
the validation of the request and The ability to correctly define the progress
object. The Data ID (Old Request ID, States, User etc are in the base
DDSXML_UserData class. This allows all data to be treated by the API, Server,
and Handler etc using the same methods for information common to all. This
does not include the progress of the Request. (Internal use only) The state of the
request can be viewed from the base DDSXML _UserData Class. This does not

include the messages of the request.

The Class diagram representing the DDSXML_Request Class is provided in
Figure 6.2.11-1, DDSXML_Request UML Diagram.

DDSAPI_Message

DDSXML_Request

DDSXML_Email DDSXML_ProductRequest

Figure 6.2.11-1, DDSXML_Request UML Diagram

6.2.11.1 DDSAPI_Message Class Attributes
e std::string DDSXML_Request::DDSXML_RequestTypesNames[11] — DDS

Request Types names

D41044-01C
Page 112

6.2.11.2 DDSXML_Request Class Enumerations
e enum DDSXML_Request::DDSXML_RequestTypes — Valid DDS Request
Types

e enum DDSXML_Request::DDSXML_ImplementationRequestTypes —
Valid DDS Implementation Request Types The internal progress objects

must match up to these implementation types.
o Catalog Request - URID
o Standard Request - SDR/EDR/IP, RDR, ANC, AUX, DIARY
o Catalog Query - Catalog Query

o0 Temporal Request - SDR/EDR/IP, RDR, ANC, AUX, DIARY GEO
Request - SDR/EDR/IP, RDR, DIARY

0 Temporal Geo Request - SDR/EDR/IP, RDR, DIARY
6.2.11.3 DDSXML_Request Class Functions

6.2.11.3.1 DDSXML_Request::getRequestType
DDSXML_RequestTypes DDSXML_Request::getRequestType (

)
This method returns the type of the Request.
Returns:
e DDSXML_RequestTypes the RequestType of the Request or O if none

6.2.11.3.2 DDSXML_Request::getRequestTypeName
std::string DDSXML_Request::getRequestTypeName (

)

This method returns the name of the Request Type.
Returns:

e std::string the RequestType of the Request

D41044-01C
Page 113

6.2.11.3.3 DDSXML_Request::getRequestName
std::string DDSXML_Request::getRequestName (

)
This method returns the name of the Request.
Returns:
e std::string the RequestType of the Request

6.2.11.3.4 DDSXML_Request::setRequestName
bool DDSXML_Request::setRequestName (

std::string requestName
)
This method sets the name of the Request.
Parameters:
o requestName The request name
Returns:
e bool True if OK, else false

6.2.11.3.5 DDSXML_Request::getRequestimplementationType
DDSXML_ImplementationRequestTypes
DDSXML_Request::getRequestimplementationType (

)
This method returns the implementation type of the Request.
Returns:

e DDSXML_ImplementationRequestTypes The Request Implementation
Type of the Request or 0 if none

6.2.11.3.6 DDSXML_Request::getRequestimplementationName
std::string DDSXML_Request::getRequestimplementationName (

)

D41044-01C
Page 114

This method returns the implementation name of the Request.
Returns:
e std::string The Request Implementation Type

6.2.11.3.7 DDSXML_Request::getEmaillnformation
DDSXML_Email* DDSXML_Request::getEmaillnformation (

)

This method returns the email address used to send status messages to the
user. If no email address is set then a null string is returned. In order to use this it

must be enabled for the user’s role. Caller owns the object returned.
Returns:
e DDSXML_Email* The email information

6.2.11.3.8 DDSXML_Request::isTemplate
bool DDSXML_Request::iisTemplate (

)

This method retrieves the template flag for this request. This will allow for any

request in the future to be a template.
Returns:
e bool true = This request is a template false= This request is not a template

6.2.11.3.9 DDSXML_Request::addDestination
bool DDSXML_Request:;:addDestination (

std::string destination|D

)

This method adds a destination to the existing Request XML. The destination
information is set according to the Destination object parameter. The NumberOf

Destinations is also incremented by this method.

Parameters:

D41044-01C
Page 115

e destinationID The user defined destination ID to be added to the request.
Returns:
e bool - True if OK, else false if not

6.2.11.3.10 DDSXML_Request::getDestinations
std::vector<std::string> DDSXML_Request::getDestinations (

)

This method returns a vector of string objects that represents all destinations ID's

currently entered into the request.
Returns:

e std::vector<std::string> The vector of strings that represent all of the
destination IDs contained in the request.

6.2.11.3.11 DDSXML_Request::getNumberOfDestinations
int DDSXML_Request::getNumberOfDestinations (

)
This method returns the number of destinations that currently exist in the request.
Returns:
e int The number of destinations in the request.

6.2.11.3.12 DDSXML_Request::removeDestination
bool DDSXML_Request::removeDestination (

std::string destination|D
)
This method removes a user defined destination from the request.
Parameters:

e destinationID The user defined destination ID for the destination to be

removed from the request or the destination ID was not found.

Returns:

D41044-01C
Page 116

e bool - True if an error occurred in executing the command

6.2.11.3.13 DDSXML_Request::destinationExists
bool DDSXML_Request::destinationExists (

std::string destination|D
)
This method check to see if a Destination ID already exists in the request.
Parameters:
e destinationID The string that contains the destination ID
Returns:
e bool true - if the Destination exists false - if the Destination does not exist

6.2.11.3.14 DDSXML_Request::setEmailinformation
bool DDSXML_Request::setEmaillnformation (

DDSXML_Email * emailinformation

)

Sets the email state and address for this Request. If the state is set to true, an
email will be sent to the address specified when the request is complete. If set to

false, no email will be sent. Caller still owns the object passed in.
Parameters:

e emaillnformation The email information
Returns:

e bool - bool True if OK, else false

6.2.11.3.15 DDSXML_Request::getimplementationTypes
static std::vector<DDSXML_ImplementationRequestTypes>
DDSXML_Request::getimplementationTypes (

DDSXML_RequestTypes requestType

D41044-01C
Page 117

This method returns a vector of implementation types that can be used for the
Request type passed in. This is static so it can be called without needing an

instance of this;
Parameters:

e requestType The request type
Returns:

e std::vector<DDSXML_ImplementationRequestTypes The vector of strings
that represent all the possible DDSXML_ImplementationRequestTypes for

a specific request type.

6.2.11.3.16 DDSXML_Request::getDestinationUsedFlag
bool DDSXML_Request::getDestinationUsedFlag (

)

This method returns the value of the used flag True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.11.3.17 DDSXML_Request::getEmailUsedFlag
bool DDSXML_Request::getEmailUsedFlag (

)

This method returns the value of the used flag True is returned if the value is

used in this request type.
Returns:
e bool True if used in this request type.

6.2.11.3.18 DDSXML_Request:.getTemplateUsedFlag
bool DDSXML_Request::getTemplateUsedFlag (

)

D41044-01C
Page 118

This method returns the value of the Template used flag True is returned if

templates are used in this request type.
Returns:
e bool True if used in this request type.

6.2.11.3.19 DDSXML_Request::getSuspendTime
Int64 DDSXML_Request::getSuspendTime (

)

This method returns the value of the Suspend time. The time is in IET

(microseconds).
Returns:
e Int64 The next Execution Time for the request.

6.2.11.3.20 DDSXML_Request::getNextExecutionTime
Int64 DDSXML_Request::getNextExecutionTime (

)

This method returns the value of the next execution. The meaning of this field is

determined by the Request Server. The time is in IET (microseconds).
This is for the Request Servers internal use only and may not be set by the user.
Returns:

e Int64 The next Execution Time for the request.

6.2.12 DDSXML_StandardRequest Class Reference
This is the XML data class for the Standard Request. This class is responsible for

storing and maintaining the state of a request in the system.

The Class diagram representing the DDSXML_StandardRequest Class is
provided in Figure 6.2.12-1, DDSXML_StandardRequest UML Diagram.

D41044-01C
Page 119

DDSAPI_Message

DDSXML_Request

DDSXML_ProductRequest

DDSXML_GEORequest

DDSXML_StandardRequest

Figure 6.2.12-1, DDSXML_StandardRequest UML Diagram

D41044-01C
Page 120

6.2.13 DDSXML_SystemMessage Class Reference

This class is responsible for handling the system message XML. It creates,
reads, writes and extracts the data from/to the XML. It also allows for validation
of the data. If the data and XML is validated then no invalid XML should be sent

across the API.

The Class diagram representing the DDSXML_SystemMessage Class is
provided in Figure 6.2.13-1, DDSXML_SystemMessage UML Diagram.

DDSAPI_Message

DDSXML_SystemMessage

Figure 6.2.13-1, DDSXML_SystemMessage UML Diagram

6.2.13.1 DDSXML_SystemMessage Class Enumerations
e enum DDSXML_SystemMessage::DDSXML_SystemMessageSeverity —

Valid System Message severity levels

6.2.13.2 DDSXML_SystemMessage Class Functions
6.2.13.2.1 DDSXML_SystemMessage::getMessage
std::string DDSXML_SystemMessage::getMessage (

)
This method retrieves the message.
Returns:
e std::string The message .

6.2.13.2.2 DDSXML_SystemMessage::setMessage
void DDSXML_SystemMessage::setMessage (

D41044-01C
Page 121

const std::string & message
)
This method sets the message.
Parameters:
e message The message .

6.2.13.2.3 SystemMessage::getTimeStamp
Int64 DDSXML_SystemMessage::getTimeStamp (

)
This method retrieves the TimeStamp. The time is in IET (microseconds).
Returns:
e Int64 The TimeStamp .

6.2.13.2.4 DDSXML_SystemMessage::setTimeStamp
void DDSXML_SystemMessage::setTimeStamp (

Int64 timeStamp
)
This method sets the TimeStamp. The time is in IET (microseconds).
Parameters:
e timeStamp The TimeStamp .

6.2.13.2.5 DDSXML_SystemMessage::setSeverity
void DDSXML_SystemMessage::setSeverity (

DDSXML_SystemMessageSeverity severity
)
This method sets the Severity.
Parameters:

e severity The Severity .

D41044-01C
Page 122

6.2.13.2.6 DDSXML_SystemMessage::getSeverity
DDSXML_SystemMessage::DDSXML_SystemMessageSeverity

DDSXML_SystemMessage::getSeverity (
)
This method retrieves the Severity from the XML.
Returns:
e DDSXML_SystemMessageSeverity The Severity .

6.2.13.2.7 DDSXML_SystemMessage::getStoreFlag
bool DDSXML_SystemMessage::getStoreFlag (

)
This method retrieves the Store Flag.
Returns:
e bool The Store Flag .

6.2.13.2.8 DDSXML_SystemMessage::setStoreFlag
void DDSXML_SystemMessage::setStoreFlag (

bool storeFlag
)
This method sets the Store Flag.
Parameters:
e storeFlag The Store Flag .

6.2.14 DDSXML_TemporalRequest Class Reference
This is the XML data class for the Temporal Request. This class is responsible

for storing and maintaining the state of a request in the system.

The Class diagram representing the DDSXML_TemporalRequest Class is
provided in Figure 6.2.14-1, DDSXML_TemporalRequest UML Diagram.

D41044-01C
Page 123

DDSAPI_Message

DDSXML_Request

DDSXML_ProductRequest

DDSXML_GEORequest

DDSXML_TemporalRequest

Figure 6.2.14-1, DDSXML_TemporalRequest UML Diagram

6.2.14.1 DDSXML_TemporalRequest Class Functions
6.2.14.1.1 DDSXML_TemporalRequest::getTemporalStart
Int64 DDSXML_TemporalRequest::getTemporalStart (

)

This method returns the temporal start for the request in Int64. The time is in
microseconds since midnight. getTemporalStartUsedFlag() must return true for
this field to be valid.

Returns:

e Int64 The request's temporal start

D41044-01C
Page 124

6.2.14.1.2 DDSXML_TemporalRequest::getTemporalDuration
Int64 DDSXML_TemporalRequest::getTemporalDuration (

)

This method returns the temporal duration for the request in Int64. The time is in
microseconds. getTemporalDurationUsedFlag() must return true for this field to

be valid.
Returns:
e Int64 The request's temporal duration

6.2.14.1.3 DDSXML_TemporalRequest::setTemporalStart
bool DDSXML_TemporalRequest::setTemporalStart (

Int64 temporalStart

)

This method sets the temporal start for the request in Int64. The time is in
microseconds since midnight. This must be between getMinimumTemporalStart()
and getMaximumTemporalStart(); getTemporalStartUsedFlag() must return true
for this field to be valid.

Parameters:

e temporalStart The request's temporal start
Returns:

e bool True if set ok

6.2.14.1.4 DDSXML_TemporalRequest::setTemporalDuration
bool DDSXML_TemporalRequest::setTemporalDuration (

Int64 duration

)

This method sets the temporal duration for the request in seconds. This must be
between getMinimumTemporalDuration() and getMaximumTemporalDuration();

getTemporalDurationUsedFlag() must return true for this field to be valid. The

D41044-01C
Page 125

time is in microseconds.
Parameters:

e duration The request's temporal duration
Returns:

e Dbool True if set ok

6.2.14.1.5 DDSXML_TemporalRequest::getMinimumTemporalStart
Int64 DDSXML_TemporalRequest::getMinimumTemporalStart (

)

This method returns the MinimumTemporalStart The time is in IET

(microseconds).
Returns:
e Int64 The MinimumTemporalStart

6.2.14.1.6 DDSXML_TemporalRequest::getMaximumTemporalStart
Int64 DDSXML_TemporalRequest::getMaximumTemporalStart (

)

This method returns the MaximumTemporalStart The time is in IET

(microseconds).
Returns:
e Int64 The MaximumTemporalStart

6.2.14.1.7 DDSXML_TemporalRequest::getMinimumTemporalDuration
Int64 DDSXML_TemporalRequest::getMinimumTemporalDuration (

)

This method returns the MinimumTemporalDuration The time is in IET

(microseconds).
Returns:

e Int64 The MinimumTemporalDuration

D41044-01C
Page 126

6.2.14.1.8 DDSXML_TemporalRequest::getMaximumTemporalDuration
Int64 DDSXML_TemporalRequest::getMaximumTemporalDuration (

)

This method returns the MaximumTemporalDuration The time is in IET

(microseconds).
Returns:
¢ Int64 The MaximumTemporalDuration

6.2.15 DDSXML_DataProductIDList Class Reference

This class is responsible for handling the data product List XML. It creates,
reads, writes and extracts the data from/to the XML. It also allows for validation
of the data. If the data and XML is validated then no invalid XML should be sent
across the API. This is used for the initial configuration from the Server. The

request uses an ID list only.

The Class diagram representing the DDSXML_DataProductIDList Class is
provided in Figure 6.2.15-1, DDSXML_DataProductIDList UML Diagram.

DDSAPI_Message

DDSXML_DataProductList

DDSXML_DataProductIDList

Figure 6.2.15 -1, DDSXML_DataProductIDList UML Diagram

D41044-01C
Page 127

6.2.15.1 DDSXML_DataProductIDList Class Attributes
e static std::string
DDSXML_DataProductIDList::XML_DATA_PRODUCT_TAG — The XML
tag to create this XML type.

e static std::string
DDSXML_DataProductIDList::XML_DATA_PRODUCT_LIST_TAG — The
XML tag to create this XML type.

6.2.15.2 DDSXML_DataProductIDList Class Functions
6.2.15.2.1 DDSXML_DataProductIDList::operator=
DDSXML_DataProductIDList& DDSXML_DataProductIDList::operator= (

const DDSXML_DataProductIDList & dataProductIDList
)
Assignment operator=
Parameters:
e user The DDSXML_DataProductIDList that the data is to be copied from.
Returns:
e DDSXML_DataProductIDList A deep copy of the List

6.2.15.2.2 DDSXML_DataProductIDList::operator==
bool DDSXML_DataProductIDList::operator==

const DDSXML_DataProductIDList & dataProductIDList
)
Compare operator==
Parameters:
e user The DDSXML_DataProductIDList that the data is to be compared to.
Returns:

e bool true if the two are equal.

D41044-01C
Page 128

6.2.15.2.3 DDSXML_DataProductIDList::validate
bool DDSXML_DataProductIDList::validate (

)
This method validates the data.
Returns:
e bool true if the data is valid.

6.2.15.2.4 DDSXML_DataProductIDList::validateFields
bool DDSXML_DataProductIDList::validateFields (

bool dpIDFlag
)
This method validates the XML.
Parameters:
e dplDFlag If the flag is set validate this field
Returns:
e bool true if the data is valid.

6.2.15.2.5 DDSXML_DataProductIDList::addDataProduct
bool DDSXML_DataProductlIDList::addDataProduct (

const DDSXML_DataProductID * dataProduct
)
This method adds the data Product to this list. Caller owns data sent in.
Parameters:
e dataProduct The data Product
Returns:

e bool true if the data is valid.

D41044-01C
Page 129

6.2.15.2.6 DDSXML_DataProductIDList::getDataProductsSet
virtual bool DDSXML_DataProductIDList::deleteDataProduct (

const std::string & dplD
)
Allows the caller to delete a data product from the list.
Parameters:
e dplD Deletes data product based on data product ID.
Returns:
e bool true if the data is valid.

6.2.15.2.7 DDSXML_DataProductIDList::getDataProductsSet
std::set<DDSXML_DataProductID* >
DDSXML_DataProductIDList::getDataProductsSet (

)
This method returns the DataProducts . Caller owns the data products returned.
Returns:
e set<DataProduct* > The Data Product's

6.2.15.2.8 DDSXML_DataProductIDList::getDataProducts
std::vector<DDSXML_DataProductI|D* >
DDSXML_DataProductIDList::getDataProducts (

)
This method returns the DataProducts . Caller owns the data products returned.
Returns:
e vector<DataProduct* > The Data Product's

6.2.15.2.9 DDSXML_DataProductIDList::getDataProductiDsSet
std::set<std::string > DDSXML_DataProductIDList::getDataProductiDsSet (

)

D41044-01C
Page 130

This method returns the DataProducts . Caller owns the data products returned.
Returns:
e set<std::string > The Data Product's

6.2.15.2.10 DDSXML_DataProductIDList::getDataProductIDs
std::vector<std::string> DDSXML_DataProductIDList::getDataProductIDs (

)
This method returns the DataProducts . Caller owns the data products returned.
Returns:
e vector<std::string > The Data Product's

6.2.15.2.11 DDSXML_DataProductIDList::getDataProduct
virtual DDSXML_DataProductID* DDSXML_DataProductIDList::getDataProduct (

const std::string & dataProductID

)

This method returns the dataProduct identified by the dataProduct ID if it exists in
the system

Parameters:
e dataProductlD The dataProductID to check for
Returns:

e int A pointer to the dataProduct . 0 - The dataProduct was not found. Valid

pointer otherwise.

6.2.15.2.12 DDSXML_DataProductIDList::hasDataProductID
virtual bool DDSXML_DataProductIDList::hasDataProductID (

const std::string & dataProductID
)

This method returns true if the dataProduct ID exists in the system

D41044-01C
Page 131

Parameters:
e dataProductlD The dataProductID to check for
Returns:

e int A pointer to the dataProduct . 0 - The dataProduct was not found. Valid

pointer otherwise.

6.2.15.2.13 DDSXML_DataProductIDList::getNumberOfDataProducts
virtual int DDSXML_DataProductIDList::getNumberOfDataProducts (

)
This method returns the number of dataProducts for this user
Returns:
e int The number of dataProducts for this user

6.2.15.2.14 DDSXML_DataProductIDList::lockDataProductList
protected bool DDSXML_DataProductIDList::lockDataProductList (

)
This method locks the mutex controlling the DataProduct List object.
Returns:
e Dbool True if data filled in false if not.

6.2.15.2.15 DDSXML_DataProductIDList::unlockDataProductList
protected bool DDSXML_DataProductIDList::unlockDataProductList (

)

This method unlocks the mutex controlling the DataProduct List object.
Returns:

e bool True if data filled in false if not.

D41044-01C
Page 132

6.2.16 DDSXML_User Class Reference

This class is responsible for handling the user XML. It creates, reads, writes and
extracts the data from/to the XML. It also allows for validation of the data. If the
data and XML is validated then no invalid XML should be sent across the API.
The DDS system uses a username and user role as one unique user. All

searches are base on the user name and user role as a key.

The Class diagram representing the DDSXML_User Class is provided in Figure
6.2.16-1, DDSXML_User UML Diagram.

DDSAPI_Message

DDSXML_User

Figure 6.2.16 -1, DDSXML_User UML Diagram

6.2.16.1 DDSXML_User Class Functions
This class should not be used directly by the User API. Objects of this type

cannot be accessed by the API.

D41044-01C
Page 133

6.2.17 DDSXML_UserList Class Reference

This class is responsible for handling the user list XML. It creates, reads, writes
and extracts the data from/to the XML. It also allows for validation of the data. If
the data and XML is validated then no invalid XML should be sent across the
API.

The Class diagram representing the DDSXML_UserList Class is provided in
Figure 6.2.17-1, DDSXML_UserList UML Diagram.

DDSAPI_Message

DDSXML_UserList

Figure 6.2.17 -1, DDSXML _UserList UML Diagram

6.2.17.1 DDSXML_UserList Class Attributes
e static std::string DDSXML_UserList::XML_USER_LIST_TAG — The XML
header to create this message type.

e static std::string DDSXML_UserList::XML_USER_TAG — The XML tag to
create this XML type.

6.2.17.2 DDSXML_UserList Class Functions
6.2.17.2.1 DDSXML_UserList::operator=
DDSXML_UserList& DDSXML_UserList::operator= (

const DDSXML_UserList & userList
)
Assignment operator=
Parameters:

e userList The DDSXML_UserList that the data is to be copied from.

D41044-01C
Page 134

Returns:
e DDSXML_UserList A deep copy of the User List

6.2.17.2.2 DDSXML_UserList::operator==
bool DDSXML_UserList::operator==

const DDSXML_UserList & userList
)
Compare operator==
Parameters:
e userList The DDSXML_UserList that the data is to be compared to.
Returns:
e bool true if the two are equal.

6.2.17.2.3 DDSXML_UserList::validate
bool DDSXML_UserList::validate (

)
This method validates the data.
Returns:

e bool true if the data is valid.

6.2.17.2.4 DDSXML_UserList::validateFields
bool DDSXML_UserList::validateFields (

bool userListFlag

)
This method validates the XML.

Parameters:
e userListFlag If the flag is set validate this field

Returns:

D41044-01C
Page 135

e bool true if the data is valid.

6.2.17.2.5 DDSXML_UserList::getUsers
virtual std::vector< DDSXML_User*> DDSXML_UserList::getUsers (

)

Get the list of all users who the requestor has access to as a vector. Caller owns

the list returned.
Returns:

e vector< DDSXML_User*> The vector that contains all users that the
requestor has access to. The DDSXML_User objects referenced by this
vector are owned by the caller and should be destroyed. This user may

become invalid if a user is deleted from the list.

6.2.17.2.6 DDSXML_UserList::findUser
virtual bool DDSXML_ UserList::findUser (

DDSXML_User * user
)
This method returns true if the user exists in the list.
Parameters:
e user The user to check for
Returns:
e bool True if the user is found in the list.

6.2.17.2.7 DDSXML_UserList::findUser
virtual DDSXML_User* DDSXML_UserList::findUser (

const std::string & userName,

const std::string & userRole

)

This method returns true if the user exists in the list. The caller owns the user

D41044-01C
Page 136

returned.

Parameters:

e userName The name of the user to look for.

e userRole The Role of the user to look for

Returns:

e DDSXML_User* The user or 0 if not found in the list.

6.2.17.2.8 DDSXML_UserList::getNumberOfUsers
int DDSXML_UserList::getNumberOfUsers (

)
Get the list of all users as a vector. Caller owns the list returned.
Returns:
e int Number of users

6.2.17.2.9 DDSXML_UserList::lockUserList
protected bool DDSXML_UserList::lockUserList (

)
This method locks the mutex controlling the User List object.
Returns:
e bool True if data filled in false if not.

6.2.17.2.10 DDSXML_UserList::unlockUserList
protected bool DDSXML_UserList::unlockUserList (

)

This method unlocks the mutex controlling the User List object.
Returns:

e Dbool True if data filled in false if not.

D41044-01C
Page 137

6.2.18 DDSXML_Email Class Reference

This class is responsible for handling the email XML. It creates, reads, writes and
extracts the data from/to the XML. It also allows for validation of the data. If the
data and XML is validated then no invalid XML should be sent across the API.

The Class diagram representing the DDSXML_Email Class is provided in Figure
6.2.18-1, DDSXML_Email UML Diagram.

DDSAPI_Message

DDSXML_Request

DDSXML_Email

Figure 6.2.18 -1, DDSXML_Email UML Diagram

6.2.18.1 DDSXML_Email Class Functions
6.2.18.1.1 DDSXML_Email::getAddress
std::string DDSXML_Email::getAddress (

)
This method retrieves the email address
Returns:
e std::string The email address

6.2.18.1.2 DDSXML_Email::getEnabledFlag
bool DDSXML_Email::getEnabledFlag (

)

This method retrieves the email enabled flag

Returns:

e bool The email enabled flag

6.2.18.1.3 DDSXML_Email::setAddress
bool DDSXML_Email::setAddress (

const std::string & emailAddress

)

This method sets the email address
Parameters:

e std::string The email address
Returns:

e bool True if address is set.

D41044-01C
Page 138

D41044-01C
Page 139

6.2.19 DDSXML_Longitude Class Reference
This is a storage container class for coordinate information.

The Class diagram representing the DDSXML_Longitude Class is provided in
Figure 6.2.19-1, DDSXML_Longitude UML Diagram.

DDSAPI_Message

DDSXML_Request

DDSXML_ProductRequest

DDSXML_GEORequest

DDSXML_Longitude

Figure 6.2.19 -1, DDSXML_Longitude UML Diagram

6.2.19.1 DDSXML_Longitude Class Functions
6.2.19.1.1 DDSXML_Longitude::setLowerRightLongitude
static DDSXML_Longitude* DDSXML_Longitude::setLowerRightLongitude (

bool isNegative,
int degrees,
int minutes,

float seconds

D41044-01C
Page 140

This method sets the Lower Right Longitude. The caller gets ownership of the

Longitude
Parameters:
e isNegative Specifies if the LatLong is negative
e degrees The degrees value for the latitude or longitude as an integer.
e minutes The minutes value for the latitude or longitude as an integer.
e seconds The seconds value for the latitude or longitude as a float.
Returns:
e DDSXML_Longitude The Longitude or NULL if not valid.

6.2.19.1.2 DDSXML_Longitude::setUpperLeftLongitude
static DDSXML_Longitude* DDSXML_Longitude::setUpperLeftLongitude (

bool isNegative,
int degrees,

int minutes,
float seconds

)

This method sets the Upper Left Longitude The caller gets ownership of the
Longitude

Parameters:
e isNegative Specifies if the LatLong is negative
e degrees The degrees value for the latitude or longitude as an integer.
e minutes The minutes value for the latitude or longitude as an integer.
e seconds The seconds value for the latitude or longitude as a float.

Returns:

e DDSXML_Longitude The Longitude or NULL if not valid.

D41044-01C
Page 141

D41044-01C
Page 142

6.2.20 DDSXML_Latitude Class Reference
This is a storage container class for coordinate information.

The Class diagram representing the DDSXML _ Latitude Class is provided in
Figure 6.2.20-1, DDSXML_Latitude UML Diagram.

DDSAPI_Message

DDSXML_Request

DDSXML_ProductRequest

DDSXML_GEORequest

DDSXML _Latitude

Figure 6.2.20 -1, DDSXML _Latitude UML Diagram

6.2.20.1 DDSXML_Latitude Class Functions
6.2.20.1.1 DDSXML_Latitude::setLowerRightLatitude
static DDSXML_ Latitude* DDSXML _ Latitude::setLowerRightLatitude (

bool isNegative,
int degrees,
int minutes,

float seconds

D41044-01C
Page 143

)

This method sets the Lower Right Latitude The caller gets ownership of the
Latitude

Parameters:
e isNegative Specifies if the LatLong is negative
e degrees The degrees value for the latitude or longitude as an integer.
e minutes The minutes value for the latitude or longitude as an integer.
e seconds The seconds value for the latitude or longitude as a float.
Returns:
e DDSXML_Latitude The Latitude or NULL if not valid.

6.2.20.1.2 DDSXML_Latitude::setUpperLeftLatitude
static DDSXML_Latitude* DDSXML_ Latitude::setUpperLeftLatitude (

bool isNegative,
int degrees,

int minutes,
float seconds

)

This method sets the Upper Left Latitude. The caller gets ownership of the
Latitude

Parameters:

isNegative Specifies if the LatLong is negative

degrees The degrees value for the latitude or longitude as an integer.

minutes The minutes value for the latitude or longitude as an integer.

seconds The seconds value for the latitude or longitude as a float.

D41044-01C
Page 144

Returns:

e DDSXML_Latitude The Latitude or NULL if not valid.

D41044-01C
Page 145

APPENDIX A SYSTEM REQUIREMENTS

The Installation Guide for the NPOESS API is documented in the Installation Guide
which accompanies the software as delivered by NPOESS. The Installation Guide file is
identified in the distribution by the filename: INSTALL-JAVA, INSTALL-CPP, INSTALL-
JMS. See the appropriate file details.

The NPOESS API is designed for use on the Microsoft® Windows® platform and on
IBM AIX® (Advanced Interactive eXecutive) operating systems. The NPOESS API is
developed and tested using the following Commercial Off-The-Shelf (COTS) Products

e Unix
o IBM AIX® 5.3, 06-03-0732
o Firefox 1.5.0.6
o Citrix ICA Client 6.30.1095
o StorNext Server/Client v.3.1.3
o BEA Weblogicv. 8.1.3
e Windows
o Windows XP Professional
o Windows 2003 Service Pack 2
0 Microsoft IIS FTP Client
0 Internet Explorer
o Citrix ICA Client Plugin
o StorNext Server/Client (Server on Windows 2003 only) v. 3.1.3

o BEA WebLogic Client

D41044-01C
Page 146

For the C++ APIs the following compilers are used:
o C++APIs
o Version 10 of IBM’s VisualAge®
o0 Version 7 of the Microsoft® Visual Studio® compiler
e Commercial Off-The-Shelf (COTS) Products
o IBMAIX®
»= Version 2.6.0 of Apache’ Xerces-C
= Version 7.0 of Borland® VisiBroker®
= Version 1.4 of Apache Axis
= Version 0.9.8d of OpenSSL
= Version 1.0.2 of log4cplus
= Version 2.6.0 of Apache Xerces C++
= Version 1.9.0 Xalan C++
0 Microsoft® Windows®
= Version 2.6.0 of Apache Xerces
= Version 7.0 of Borland® VisiBroker®Version 1.4 of Apache Axis
= Version 0.9.8d of OpenSSL
= Version 1.0.2 of log4cplus
= Version 2.6.0 of Apache Xerces C++

= Version 1.9.0 Xalan C++

' Apache refers to the Apache Software Foundation, which serves as a focal point for the development of
standards-based XML solutions. Apache also provides feedback to international standards bodies such
as Internet Engineering Task Force (IETF) and World Wide Web Consortium (W3C).

D41044-01C
Page 147

APPENDIX B DOCUMENT SPECIFIC ACRONYMS LIST

This table identifies and defines acronyms unique to this document. All other acronyms
are listed and identified in the NPOESS Program Acronyms, D35838.

Table B-1, Document-Specific Acronym List

Acronym Definition
AIX Advanced IBM Unix
IETF Internet Engineering Task Force
SEITO System Engineering, Integration, Test and Operations
W3C World Wide Web Consortium

